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INTRODUCTION

Living inarticulated brachiopods are a
highly diversified group. All are marine, with
most species extending from the littoral wa-
ters to the bathyal zone. Only one species
reaches abyssal depths, and none is restricted
to the intertidal zone. Among the living
brachiopods, the lingulides, which have been
most extensively studied, are the only well-
known group.

Both living lingulide genera, Lingula and
Glottidia, are the sole extant representatives
of a Paleozoic inarticulated group that have
evolved an infaunal habit. They have a range
of morphological, physiological, and behav-
ioral features that have adapted them for an
endobiont mode of life that has remained
remarkably constant at least since the early
Paleozoic. The lingulide group shares many
features that are characteristic of this mode
of life including a shell shape that is oblong
oval or rectangular in outline with straight,
lateral, subparallel to parallel margins and an
anterior margin that is straight to slightly
concave for burrowing; a complex muscle
system that operates the inarticulated valves;
a mantle margin and its setae that serve sev-
eral basic purposes; and a pedicle that an-
chors the animal at the bottom of the burrow
and shifts the position of the shell. Such
characteristics can be considered as plesio-
morphic among the Brachiopoda.

The ecological requirements of inarticu-
lated brachiopods indicate the need for a life-
history approach that emphasizes aspects of
populations rather than individuals because
many such factors as reproduction, survivor-
ship, dispersion, and evolution depend on
populations. Accordingly there is no single
factor that determines the occupancy of a
niche by a population and that is always di-
rectly related to the biocoenosis in which the
population is living. Those requirements

need to be analyzed carefully at the popula-
tion level before using them to interpret spe-
cies and genera.

Assemblages with lingulides are routinely
interpreted as indicating intertidal, brackish,
and warm conditions, but the evidence for
such assumptions is mainly anecdotal. In
fact, formation of lingulide fossil beds gen-
erally occurred during drastic to catastrophic
ecological changes.

BEHAVIOR
INFAUNAL PATTERN: LINGULIDAE

Burrows

Lingulides live in a vertical burrow in a
soft substrate. Their burrow has two parts
(Fig. 407): the upper part, oval in section,
about two-thirds of the total length of the
burrow, in which the shell moves along a
single plane, and the cylindrical lower part in
which only the pedicle moves (EMIG, 1981b,
1982). In a homogenous fine sand the length
of the whole burrow is about ten times the
length of the shell (Fig. 407), but it can be
reduced when the coarse fraction increases at
depth in the sediment or when a hard layer
occurs (EMIG, 1982). In tropical areas, a layer
formed by pieces of coral and pebbles or by
shell fragments often limits the thickness of
the sandy sheet to about 15 to 20 cm. The
pedicle is anchored within this coarse layer,
and the detrital mass of the bulb is less than
that of individuals living in thick, sandy sedi-
ment. The extension of the pedicle can reach
a length 20 times that of the shell to com-
pensate for sedimentation (EMIG, 1983a).
Fossil burrows with lingulide shells in situ
show the same structure (Fig. 407). Thus
when determining the relationship of the
burrow to the length of the shell, the com-
paction of the sand layer can be estimated at
about one-third (EMIG & others, 1978;
EMIG, 1982).
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The walls of the burrow are lined with
mucus secreted by the edges of the mantle
and the pedicle (EMIG, 1982). The mucous
layer binds the walls and lubricates the
movements of the animal in its burrow. Only
the distal bulb of the pedicle, surrounded by
a mass of sand and various detrital particles
agglutinated by the bulb’s sticky mucous se-
cretion, is firmly anchored into the substra-
tum at the bottom of the burrow (Fig. 407).
The size of this mass depends upon charac-
teristics of the sediment. Functioning like
the ampulla in the Phoronida, the distal bulb
of the lingulides is able, by turgescence un-

der coelomic pressure, to reinforce the an-
choring in the substratum and is enhanced
by crenulation of the pedicle bulb.

The lingulides often live in sediment that
is in a reducing environment below the up-
per 2 to 5 centimeters, but the peripheral
substrate, which is up to 1 to 2 mm thick
along the burrow walls, is oxygenated by
continuously renewed water in the burrow
(Fig. 407).

Continuous filtering indicates that the
normal position of the lingulide shell is at
the top of the burrow (EMIG, 1982). To
maintain this position (Fig. 408), a weak

FIG. 407.1a, Longitudinal section of a burrow of a living lingulide with the shell in normal position and retracted
(and 1b, detailed pedicle mass); and 2, of a fossil lingulide (Triassic of Vosges Mountains; Emig & others, 1978).
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contraction of the lateral body muscle layer
produces a hydrostatic pressure on the
body's coelomic cavity; the body volume is
shifted posteriorly and laterally; the valves
gape about 6° to rest against the lateral bur-
row walls, which act as supports; and the lo-
phophore extends to become functional
within an enlarged pallial cavity. The normal
life position is static and can be maintained
without much effort. The pedicle plays no
role in the maintenance of this position.
Occasional scissorlike movements of the
valves assist in maintenance of the burrow
(Fig. 409).

Coarser or muddier substrates are less well
suited for providing stable burrow walls.
Consequently, the animal is unable to live or
to survive in sediment that is too coarse or
too muddy, contrary to general assumptions
about habitats of lingulides. Thus living
lingulides have rarely been found in muddy
sediments with a fine fraction (< 63 µm)
higher than 35 to 40 percent because in such

fluid sediments the walls, even when bonded
by mucous secretion, inadequately support
the shell in its normal filtering position
(EMIG, 1983a).

At the surface of the sediment, three char-
acteristic pseudosiphons indicate the pres-
ence of a lingulide in normal, life position
(Fig. 407–408, 410; Table 35). They are
shaped by the highly specialized anterior se-
tae of the mantle. At the level of the shortest
setae, the anterior mantle margin of each
valve develops an epidermal crest. These
come into contact with each other and in-
duce tilting and interlacing of the setae
borne by the crests. Simultaneously the long-
est setae, which can be as long as a third of
the shell length, remain vertical (Fig. 408).
The central aperture is exhalant, while the
two lateral apertures are inhalant. The exhal-
ant and inhalant water streams are com-
pletely separated by the mantle crests and
internally by tentacle tips without any mix-
ing of the flows. The diameter of setae varies

FIG. 408. Longitudinal section of a lingulide in its burrow; 1, ventral side showing the mantle setae length; 2, nor-
mal position (lateral view) by contraction of the lateral muscles; 3, quick valve closure by contraction of the ante-

rior and posterior adductor muscles, first step of the escape reflex (new).
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from 15 to 60 µm, and they occur at inter-
vals of 15 to 30 µm so that they exclude large
particles from the pallial cavity. Contrary to
general assumptions (PAINE, 1970; THAYER &
STEELE-PETROVIC, 1975), the absence of lin-
gulides from mud is not related to clogging
of the lophophoral cavity by fine particles. In
a turbid water mass, fine particles may be
retained in large masses by the mucus on the
setae of the pseudosiphons and do not enter
the pallial cavity but are flushed out periodi-
cally by scissorlike movements of the shell
(EMIG, 1983a).

No orientation related to current direction
has been observed (WORCESTER, 1969; EMIG,
1981b) because the strong, jetlike, exhalant
current precludes possible recycling by the
inhalant currents. A turn of the shell plane of
about 25 to 30° from the near-bottom cur-

rent direction appears to be sufficient to
avoid recycling (Fig. 410).

Shell Movements and Burrowing

Shell movements and burrowing behavior
are similar in both extant lingulide genera,
Lingula and Glottidia (YATSU, 1902b; THAYER

& STEELE-PETROVIC, 1975; EMIG, 1981b,
1982, 1983b; TRUEMAN & WONG, 1987;
SAVAZZI, 1991), and have probably been
practiced by oblong or rectangular lingu-
loides since early Paleozoic times (EMIG,
1984b; SAVAZZI, 1991).

Opening and slow closing movements
(Fig. 408–409) of the valves are governed by
fluctuations in pressure within the meta-
coelomic body cavity and are generated by
contraction of the lateral muscle layers of the
body, which are composed of circulo-
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FIG. 409. 1, U-shaped reburrowing by Glottidia (Emig & others, 1978); 2, sequence of the scissors burrowing move-
ments of G. pyramidata (Thayer & Steele-Petrovic, 1975); 3, patterns in the burrowing sequence of Lingula anatina

(Savazzi, 1991).
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longitudinal fibers. This body cavity func-
tions as a single, fluid-filled chamber, al-
though partially divided by a gastroparietal
band and, with the coelomic canal of the
pedicle, acts as a fluid reservoir in the hy-
draulic system. This system that opens the
valves performs the same function as the
elastic hinge ligament of the molluscs and
the diductor muscles of articulated brachio-
pods. Quick closure is obtained by the con-
traction of the anterior and posterior adduc-
tor muscles. Scissorlike movements of the
valves occur by contraction of the well-
developed, oblique muscles. This complex
body musculature sustains the unique, infau-
nal mode of life of these brachiopods.

When a lingulide is on a sandy substrate,
fluctuations in pressure within the coelomic
body and pedicle cavities open and close the
valve. When the lingulide starts to burrow
(Fig. 409), the pedicle stiffens with its distal
bulb pressing downward to prop up the
valves, thereby bringing the anterior margins
of the valves into contact with the sediment.
Penetration takes place by means of a com-
bination of scissorlike movements of the
valves and ejection of water from them that
loosen the sand prior to a downward move-
ment of the shell and an upward transporta-
tion of mucous-bound sand by the lateral
setae of the mantle.

The typical burrowing sequence consists
of the following phases (Fig. 409). First,
scissorlike movements occur by oscillatory
rotation of the valves about an axis passing
dorsoventrally through the posterior shell;
the movements coincide with small, pressure

pulses and, although the shell is moderately
gaping, the setae, which prevent sediment
particles from entering the mantle cavity, aid
in the burrowing process. A complete rota-
tion takes five to eight seconds. Second,
there is a slow opening of the valve of one to
five seconds in duration, followed by a short
pause (up to three seconds). Third, a slow
closure and then reopening of the valves are
followed by a quick contraction of the ad-
ductor muscles that forces water jets into the
surrounding sediment. Fourth, there is a
pause of variable length.

Progression into the sand coincides with
large pressure pulses and is facilitated by the
secretion of a large amount of mucus. Con-
trary to popular belief, the lingulide pedicle
is not used for burrowing; it is unable to dig
into the sediment. Instead it acts as a support
or prop while repeated scissorlike move-
ments, shell closure with water injection, and
shell openings accompanied by pressure
pulses result in successively deeper penetra-
tion. Burrowing follows a semicircular
course, the radius of which probably de-
pends on shell size. The animal burrows ob-
liquely downward to a depth that has not yet
been established in natural conditions, then
curves upward and burrows vertically until it
reaches the surface of the sediment. Pedicle
anchoring following burial is achieved by
mucoid adhesion of sand and various par-
ticles. Some fossil U-shaped burrows could
be related to reburrowing features (EMIG &
others, 1978). While reentering the sedi-
ment the animal is extremely susceptible to
predation.

TABLE 35. Summary of the two adult lophophore types in living inarticulated brachiopods in
relation to the number of inhalant (in) and exhalant (ex) compartments and apertures in the

shell and shell orientation in or on substratum (new).

Taxa Genera Species Shell orientation Schizolophe Spirolophe
of Pelagodiscus atlanticus

Lingulides 2 12 shell vertical - 2 in + 1 ex1

Craniids 4 19 dorsal valve above, ventral valve below - 2 in + 1 ex1

Discinids 1 1 dorsal valve above, ventral valve below 1 in + 2 ex
3 11 dorsal valve above, ventral valve below - 1 in + 2 ex

1in these groups, there are two small additional exhalant apertures behind the shell.
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Burrowing is faster in small individuals
than in larger ones, and failure to reburrow
increases in Lingula with shell lengths ex-
ceeding 1.7 to 2 cm (MORSE, 1902; AWATI &
KSHIRSAGAR, 1957; WORCESTER, 1969; EMIG,
1981b, 1982, 1983a; HAMMOND, 1983;
SAVAZZI, 1991). Reburrowing could be inter-
preted as a size-related process, but such a
performance seems to vary between geo-
graphic populations, as contradicting ac-
counts have shown (EMIG, 1983a; SAVAZZI,
1991). In experimental conditions the bur-
rowing speed is always five to ten times faster
than in natural conditions (Table 36). Up-
ward burrowing is essential for the survival
of the lingulides and can be accelerated to
compensate for sedimentation above their
burrows, perhaps a response to the increase
of the sediment pressure (Table 36). A rapid
influx of coarse sediment, which is not typi-
cal of the environments of lingulides, how-
ever, may occur during high-energy events
(HAMMOND, 1983). The nature of the sedi-
ment has a direct influence on burrowing
capability, which is about twice as fast in a
sandy substrate as in coarser sediment (par-
ticles > 2 mm). In experimental conditions
Lingula anatina was able to burrow upward
in coarse sediment but was unable to con-
struct a stable burrow and finally emerged
onto the sediment surface, often after auto-
tomy of its pedicle. The results are indecisive
under natural conditions (EMIG, 1983a), but
the temperature seems to have no influence
on the burrowing speed. Glottidia is unable

to dig in such coarse sediments (THAYER &
STEELE-PETROVIC, 1975; CULTER, 1979).

During rapid experimental sedimentation,
autotomy of the pedicle occurs when accu-
mulation exceeds the pedicle extension. A
new pedicle is regenerated in four to eight
weeks in Lingula, but individuals without a
pedicle maintain their filtering position with
difficulty and generally emerge onto the sedi-
ment surface. Any damage to the pedicle al-
ways impairs burrowing as it precludes the
use of the coelom as a hydraulic system. L.
reevii is able to move pebbles of several cen-
timeters in diameter that happen to lie on
top of its burrow (EMIG, 1981b).

Retraction into the Burrow

Rapid retraction into the burrow is an es-
cape reflex (FRANÇOIS, 1891; MORSE, 1902)
that is well known in almost all animals that
live in burrows or tubes. This protective re-
action in response to unfavorable circum-
stances in the external environment is ac-
companied by the rapid closure of the shell.
This response by the lingulides is elicited by
tactile stimulations of the anterior marginal
setae (MORSE, 1902; TRUEMAN & WONG,
1987), by an organism moving over the sedi-
ment surface, or by a shadow falling on the
brachiopod (EMIG, 1981b). Such stimuli re-
sult in a quick closure of the shell with expul-
sion of water combined with contraction of
the pedicle muscle, and the animal with-
draws quite quickly into the burrow. If the
disturbance continues the animal generally

FIG. 410. Composite of two transverse sections of a lingulide in its burrow, one section at the level of the anterior
mantle margin showing the epidermal crests and inhalant and exhalant opening (shown in heavy lines), the other at

the level of the lophophore (shaded in gray) (adapted from Emig, 1982).
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retracts 1 to 3 cm from the surface into the
lower section of the upper part of the bur-
row. During retraction the upper part (0.5 to
1 cm) of the burrow collapses and is obtu-
rated by sand grains, although in compact
sand the burrow remains open (EMIG,
1981b, 1982).

At the end of a disturbance, the lingulide
is elevated by scissorlike and small opening
movements of the shell combined with the
action of the setae and copious mucous se-
cretion, all of which restore the upper part of
the burrow. During retraction and reex-
tension, the coelomic pedicle canal functions
as a hydrostatic skeleton combined with the
contractions of the pedicle muscle and coelo-
mic pressures in the body.

In intertidal environments, the lingulide
retracts into the burrow during low tide. It
follows the water level down and then moves
upward again with the advancing tide
(CHUANG, 1956, 1961; EMIG & others,
1978).

EPIFAUNAL PATTERN: DISCINIDAE
AND CRANIIDAE

The other extant inarticulated brachio-
pods are epifaunal, attached either by a fixa-
tion organ (discinids) or by cementation to
some hard substrate (craniids). The ventral
valve is always oriented toward the substra-
tum, a feature that the discinids and craniids
share with the articulated thecideidines,
which is related to the orientation of the

larva during settlement. All discinids are at-
tached by a highly muscular pedicle to hard
substrates except for Pelagodiscus, which is
closely fixed to the hard substrate by means
of its two main vertical body muscles. The
pedicle is very short, and the shell is held
near the substratum. Among living inar-
ticulated brachiopods only the pedicle of the
discinids has a dual function. It acts as an
anchor, and it supports the weight of the
shell and holds it in relative position to the
substrate (Fig. 411.2).

The craniids, which are cemented by the
entire surface of the ventral valve to a hard
substrate, lack a pedicle; the larvae settle with
the posterior end expanded along the sub-
strate and secreting the ventral valve, which
is cemented to the substrate. This ventral
valve is variably calcified in Neocrania species
and has a calcified, alveolate structure in
Neoancistrocrania norfolki.

As in lingulides, the strong adductor
muscles of discinids and craniids close the
shell, which is opened mainly or exclusively
by hydrostatic mechanisms with longitudi-
nal and outer body muscles working against
the pressure of the coelomic fluid. The setae
of the mantle edges of the discinids are as
highly specialized as those of lingulides.
They have tactile sensitivity, resulting in a
protective closure of the shell, which is ac-
companied by the contraction of the pedicle
drawing the shell near the substratum. The
craniids have no setae.

TABLE 36. Experimental and in situ (measurements in italics) burrowing conditions (data from
a, Emig, 1981b; b, Emig, 1983a; c, Hammond, 1983; d, Paine, 1963; Thayer & Steele-Petrovic,

1975; e, Worcester, 1969). Mean burrowing speed is given in parentheses (new).

L. anatina (b) L. reevei (a, e) G. pyramidata (d)

Burrowing speed in normal conditions (cm/h)
experimental 0.5–1.7 (0.9) 0.2–2.5 (0.75) 0.67–2.7
in situ 0.08–0.21 0.21–0.75 < 0.67–2.7

Mean upward speed (cm/h) during experimental sedimentation
Thickness of sediment b  c  e d
10 cm (0.11) (0.45) - (1.3)
15 cm - - (0.14), (1.07) -

20 cm (0.13) (0.58) - (0.33)
30 cm (0.18) - (0.38) (0.40)
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The shells of discinids and craniids gape
quite widely at the anterior edge and more
narrowly at the posterior margin. A copious,
median, inhalant flow enters the shell ante-

riorly and exits through two, posterolateral,
exhalant gapes (Table 35; PAINE, 1962b;
LABARBERA, 1985; EMIG, 1992). Another dis-
position for craniids is that two inhalant cur-

FIG. 411. 1, Live Discradisca strigata in pumping position, the anterior setae interlocked to form a functional siphon;
arrows indicate in- and outcurrent directions (adapted from LaBarbera, 1985); 2, faunal distribution on a rocky
substrate. All D. strigata are numbered; number 6 bears a D. strigata (number 7) and number 22 bears a barnacle;

A, anemone; C, solitary coral; G, gastropod (LaBarbera, 1985).
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rents flow in at the anterolateral margins,
while one main exhalant current flows out at
the anteromedian edge; additional exhalant
currents occur at the posterolateral margins
(CHUANG, 1974).

In discinids the densely packed setae of
the anterior mantle margin function as an
incurrent siphon (Fig. 411.1). These anterior
setae can be nearly three times as long as the
diameter of the shell, while the length of the
setae diminishes rapidly toward the posterior
end (MORSE, 1902). Discinids orient the lo-
phophore relative to the current (LABARBERA,
1985); but Pelagodiscus, because of the na-
ture of its attachment, probably undergoes a
small degree of reorientation against the cur-
rent. In the cemented craniids the orienta-
tion may depend on the larval settlement
under the influence of the prevailing bottom
current, with adjustments at that stage so
that the anterior region faces the local flow
direction.

Discradisca strigata has a characteristic
behavior pattern (LABARBERA, 1985). At ir-
regular intervals or when disturbed, the
valves nearly close, and the dorsal valve ro-
tates clockwise and counterclockwise
through an arc of 60 to 120°. This move-
ment rubs the lateral setae of the dorsal valve
over and past the ventral setae. The setal si-
phon is disturbed by this movement but re-
mains potent. When the dorsal valve returns
to its normal alignment with the ventral
valve, their margins clamp together tightly
and both valves rotate as a unit through an
arc of 60 to 150°. On returning to a resting
position, the margins of the valves remain
clamped tightly to the substrate, but within
several minutes at most the shell returns to a
position slightly elevated above the substrate
and the valves slowly reopen. The subcentral
foramen of discinids affords greater protec-
tion for the pedicle than the posterior open-
ing of articulated brachiopods and ensures
that the entire shell margin, including re-
gions adjacent to the pedicle, sweeps through
a sizeable arc when the animal rotates, thus
inhibiting growth of epifauna at a greater
distance from the shell.

LIFE SPAN

The longevity of lingulides based on the
length of the shell is a matter of conjecture.
The life spans of Lingula anatina and L.
reevii have been recently estimated theoreti-
cally from five to eight years, while Glottidia
pyramidata is said to live from 14 months to
less than two years (Fig. 412; MORSE, 1902;
PAINE, 1963; CULTER, 1979). Shell growth in
Lingula anatina and L. reevii decreases lin-
early with increasing size (WORCESTER, 1969;
MAHAJAN & JOSHI, 1983). L. anatina attains
a length of 25.6, 36.8, and 47.6 mm at the
age of one, two, and three years respectively
(Fig. 412); consequently the theoretical life
span appears to be six to seven years. Two
previous shell growth curves have been estab-
lished for Lingula reevii in Hawaii (WORCES-
TER, 1969) and for Lingula anatina in
Australia (Fig. 412; KENCHINGTON & HAM-
MOND, 1978). Growth in a population in a
restricted area, however, is directly related to
such local environmental factors as water
characteristics, disturbances, nature of the
substrate, and nutrients. These time-depen-
dent variations can affect the metabolism of
the animal and consequently retard or favor
growth, although the shell grows continu-
ously throughout its life. Consequently, in-
dividuals of equal shell length may differ in
age, sexual maturity, and longevity (CHUANG,
1961; PAINE, 1963; WORCESTER, 1969; C.
EMIG, personal unpublished data, 1983).

There are few data on the life spans of
other inarticulated brachiopods. Populations
of Discradisca strigata (LABARBERA, 1985)
take more than 10 years to become stabi-
lized. The three to six growth rings in the
shell of Pelagodiscus atlanticus may be inter-
preted as evidence of a life span of three to
six years. However, shells from the continen-
tal slope have a greater length and a narrower
relative width and a smoother, less crenu-
lated periostracum than those from the abys-
sal plain (ZEZINA, 1981). These differences
seem to be the results of such environmental
factors as temperature variations (2.65 to
3.07°C on the slope, 2.2 to 2.35°C in the
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plain) and food supply. Presumably these
factors control the growth rate more effec-
tively on the slope than on the abyssal plain
(ZEZINA, 1981). Neocrania anomala lived for
14 months in aquaria at normal laboratory
light and without changing the water
(JOUBIN, 1886).

ECOLOGY

ABIOTIC FACTORS

Substrates

Soft substrates: Lingulidae.—Lingulides
live in compact and stable sediments under
the influence of moderate, near-bottom cur-
rents (PAINE, 1970; EMIG, 1984a). The two
preferred substrates are either well-sorted,
fine- to very fine-grained sand and clayey
sand (in which the 90 to 250 µm fraction
comprises more than 50 to 60 percent) and
coarse sand grains in a fine-grained or very
fine-grained sandy matrix. The sediment can
be further stabilized by marine phanerogams

or mangrove tree roots. The grain-size frac-
tion that is transported by saltation (about
90 to 220 µm) and generally associated with
the traction-load fraction (> 600 µm) deter-
mines lingulide distribution. Where the trac-
tion fraction (about 220 to 600 µm) or the
suspension fractions (< 90 µm) increase in
the sediment relative to the saltation frac-
tion, lingulide density decreases rapidly. The
distribution of lingulides in deeper waters
sometimes depends on the presence of Qua-
ternary littoral sands, as in New Caledonia.
From the few available data, the organic con-
tent of substrates containing Lingula is rather
low (one to four percent) (EMIG & LELOEUFF,
1978; BARON, CLAVIER, & THOMASSIN,
1993). Nevertheless, other ecological fea-
tures affect the distribution and may be even
more important.

Hard substrates: Discinidae and Cra-
niidae.—Discinids attached to various rocky
surfaces and to mollusc fragments occur sin-
gly or in clusters of many individuals, for ex-
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FIG. 412. Growth curves of various lingulide species; ■, Lingula anatina (data from Mahajan & Joshi, 1983); ●,  Lin-
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ample, Discinisca lamellosa, D. laevis, and
Discradisca strigata. The last species forms
clusters of more than 12 individuals sepa-
rated by less than 2 mm, while solitary indi-
viduals are uncommon (LABARBERA, 1985).

Pelagodiscus atlanticus is found attached to
rocks ranging in size from pebbles to boul-
ders (FOSTER, 1974) and is sometimes found
on bivalve shells (Vesicomya, Bathyarca),
brachiopod shells (COOPER, 1975), scaph-
opod shells, whale bones, and manganese
nodules (ZEZINA, 1981). P. atlanticus occurs
in deep-sea areas where fine-grained sub-
strates accumulate slowly; both factors ap-
pear to limit the distribution of this species
(ZEZINA, 1961).

Neocrania species show a wide depth tol-
erance and a preference for flat, hard surfaces
on which they generally grow in clusters. In
shallow water Neocrania occurs attached to
the undersides or sheltered sides of rocky
surfaces, including areas of bare rock, sub-
strates coated with coralline algae, and sub-
marine caves. In deeper water, individuals
occur on rocks, ranging from pebble to boul-
der size, shells, hard skeletons of other inver-
tebrates, various hard fragments, and, more
rarely, on other brachiopod shells (ROWELL,
1960; BERNARD, 1972; FOSTER, 1974; BRUN-
TON & CURRY, 1979; LOGAN, 1979; LEE,
1987). Neocrania larvae settle on hard sub-
strates where the sedimentation rate is very
low and often colonize substrates that are
swept by strong currents reaching 3 to 5 km/
h (ROWELL, 1960; FOSTER, 1974; LEE, 1987),
but they do not occur in more strongly cur-
rent-swept environments more frequently
than other brachiopods. The external shape
and height of the craniid shell vary greatly in
response to the contours of the substrate to
which they are attached (FOSTER, 1974; LO-
GAN, 1979; LEE, 1987).

Craniscus has been recorded from Japan
on various kinds of substrates from sandy
mud to rocky bottoms.

Salinity

At present, all inarticulated brachiopods
live in seawater of normal salinity; and, be-

cause all are typically quite intolerant of
lower salinity, none is adapted to brackish-
water or freshwater conditions. Accordingly
lingulides actually live in biotopes in normal-
marine salinities but are capable of osmotic
response to stresses of strong salinity varia-
tions, particularly at low tide in the intertidal
zone when freshwater input occurs (HAM-
MEN & LUM, 1977). The salinity range of the
populations of a species depends on the ge-
ography of its habitat. Yet populations can
survive a greater range of salinity than that
occurring in its normal environmental con-
ditions. The presence in a deltaic environ-
ment does not, therefore, imply that the
lingulides constantly live under reduced or
highly fluctuating salinities (EMIG, 1981a,
1986). Mean salinities during annual varia-
tions as low as 20‰ are exceptionally re-
ported in lingulide environments. Actually
lingulides are not tolerant of extremely low
salinity except for brief periods, generally less
than 24 hours. The lowest limit is about 16
to 18‰, which is not exceptional in com-
parison to bivalve molluscs (HAMMEN &
LUM, 1977).

Temperature

Previously regarded as the limiting factor
of the latitudinal extension of the lingulides,
the range of temperature tolerance is highly
variable among populations; and a popula-
tion of a given area is generally unable to
survive temperature variations, especially low
temperatures, larger than those occurring in
natural conditions. The salinity or tempera-
ture range under which an indigenous popu-
lation normally lives can be lethal for an-
other population adapted to a different range
of conditions. Lingula anatina is a good ex-
ample as is illustrated by comparing the re-
action of three populations that are widely
dispersed (Table 37; EMIG, 1986, 1988).
Neither of the populations from northern Ja-
pan and New Caledonia could survive at sa-
linities higher than 40 to 50‰. In northern
Japan (EMIG, 1983a) and China (LEROY,
1936) the temperatures remain below 5°C
for three months and below 11°C for more
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than six months, while populations from
New Caledonia that experience experimen-
tal temperatures below 15 to 17°C undergo
a lethal, irreversible retraction of the mantle.

The onset of breeding and the length of
the spawning season of lingulides depend
mainly on water temperature and latitudinal
and seasonal effects. They vary from a 1.5-
month period in midsummer in temperate
waters (northern Japan, Virginia) and a five-
to nine-month period between late spring
and late autumn in warm temperate waters
to year-round breeding in tropical waters
(southern Florida, Singapore, Burma, and
India) if temperatures do not drop below 26
to 27°C.

There are no data on temperature require-
ments of the discinids except that Pelago-
discus is more abundant in the deep sea at
temperatures below 3.5°C.

Neocrania species tolerate a wide annual
range of temperature related to their geo-
graphic and bathymetric distribution, from
-2° to 1.5°C for N. lecointei (FOSTER, 1974),
14 to 21°C for N. huttoni (LEE, 1987), and
about 26 to 28°C for species living in equa-
torial waters. N. anomala, which is distrib-
uted between 30° to 60°N in the Atlantic
Ocean and Mediterranean Sea, has a wide
temperature tolerance. The almost complete
absence of calcite in the pedicle valve of sev-
eral species of Neocrania does not represent
an adaptation to very cold water (FOSTER,
1974). The temperature range of the bio-
topes of Craniscus is from 2 to 18°C.

Oxygen

Lingulides are able to survive temporarily
in poorly oxygenated waters because of the

presence of hemerythrin within the coelom-
ocytes (YATSU, 1902b; HAMMEN, HANLON, &
LUM, 1962; WORCESTER, 1969). Hemeryth-
rin, however, seems to be used as a store un-
der anoxic conditions or during cessation of
respiration, such as may occur intertidally
when the burrow is exposed and is part of
the oxygen-transporting function in
lingulides. Data on the rates of oxygen con-
sumption are available only for lingulides
but are difficult to compare because they are
based on either total-animal wet weight
(HAMMEN, HANLON, & LUM, 1962) or on
dry mass of tissue (SHUMWAY, 1982). Lingula
reevii and Glottidia pyramidata have higher
rates of oxygen consumption than the articu-
lated Terebratulina septentrionalis by a factor
of two to nine, and the activity of metaboli-
cally important enzymes, such as succinate
dehydrogenase, is up to 20 times higher
(HAMMEN & LUM, 1977; HAMMOND, 1983).
On the other hand, the oxygen consumption
rate of Lingula anatina is about 2.5 times
lower than in three articulated species
(SHUMWAY, 1982).

The redox layer, which often occurs some
2 to 5 cm below the sediment-water inter-
face, does not signify a low oxygen concen-
tration in the surrounding water mass, even
in the burrow. Such anaerobic conditions as
red tides can be responsible for a mass mor-
tality. Although Glottidia pyramidata was
one of the five species of 22 species surviving
such events that temporarily lowered the
mean density of the population from 42 to
13 individuals per square meter, two years
later this density had risen to 1,332 individu-
als per square meter (SIMON & DAUER,
1977). Individuals of Glottidia are probably
able to resist short-term anoxic events be-
cause they bear mantle papillae over the sec-
ondary mantle canals in the pallial cavity.
The papillae allow an increase of the respira-
tory and nutritional exchanges. On the other
hand, the volume of the lophophoral cavity
in Glottidia is less than that of Lingula. In the
same way Lingula anatina is more resistant to
stress from loss of oxygen than bivalves col-
lected from the same locality (ROBERTSON,
1989).

TABLE 37. Annual variations of temperature,
salinity, and the bathymetric range of Lingula

anatina in three locations (Emig, 1988).

Temperature Salinity Depth
 (°C)  (g/l ) (m)

Persian Gulf 15–40 55–60 6–16
New Caledonia* 18–30 15–25 intertidal (to 67)
Northern  Japan 1–22 28–30 5–18

*lethal conditions at <15 °C and salinity of >40 g/l.
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Depth and density

Many living inarticulated species extend
through a remarkable depth range from lit-
toral waters into the bathyal zone (ranging
from the shelf break, generally about 100 m,
to 3,000 m) down to about 500 m on the
slope (Fig. 413). Only Pelagodiscus atlanticus
occurs at abyssal depths, i.e., in the zone
ranging from 3,000 to 6,000 m. Inartic-
ulated brachiopods seem not to have mi-
grated into deeper water in the course of
time and cannot be used as indicators of

depth. More than 40 percent of inarticulated
brachiopods, mainly lingulide and discinid
species, occur between 0 and 60 m depth;
and more than 40 percent of the craniids
occur between 20 to 420 m.

The optimum environment for living Lin-
gula and Glottidia species is not intertidal,
although 11 of the 12 species of lingulides
have been recorded in the intertidal zone
(PAINE, 1970; EMIG, 1984a) and in the
infralittoral zone from 1 to 2 m to about 20
m. The maximum recorded density of Lin-
gula reevii is 500 individuals per square

FIG. 413. Bathymetric distribution of the living inarticulated species; numbers at bottom indicate deepest recorded
living specimens; those in parentheses indicated deepest recorded empty shells (new).



Brachiopoda486

meter (WORCESTER, 1969); that of L. anatina
is 864 individuals per square meter (KEN-
CHINGTON & HAMMOND, 1978). Glottidia
pyramidata reaches concentrations of more
than 8,000 individuals per square meter in
Florida (CULTER, 1979), and G. albida shows
a density peak of more than 500 individuals
per square meter in depths of 22 to 47 m off
the coast of California (JONES & BARNARD,
1963).

Pelagodiscus atlanticus, one of the deepest-
water brachiopods, has been recorded
throughout the bathyal and abyssal zones
with one-third of the occurrences being at
depths of more than 4,000 m (ZEZINA, 1961)
and only a few of the records of its occur-
rence being from less than 1,000 m (ZEZINA,
1975). Its density may reach up to 480 indi-
viduals per square meter at the foot of sea-
mounts and up to 76 individuals per square
meter at 1,500 to 2,000 m in Antarctic wa-
ters (ZEZINA, 1961). On the marginal ridge
of the Kurile-Kamchatka trench, however, a
eutrophic area with a rich food supply and
rather active currents, the density of 12 indi-
viduals per square meter is comparable to
that in the tropical oligotrophic parts of the
ocean (ZEZINA, 1981). The other species of
discinids are mainly restricted to the conti-
nental shelves. Four of the 12 species of
discinids have been recorded in the intertidal
zone, although all of them are more abun-
dant below the low-tide level or subtidally
(Fig. 413).

The craniids extend from shallow waters
to the bathyal zone and appear as a deeper-
water group among the inarticulated brach-
iopods. Densities of N. anomala up to 500
individuals per square meter have been re-
corded on small, flat, hard surfaces at various
depths between 10 and 200 m. N. lecointei
has been found alive only on the seaward
edge of the continental shelf in the Ross Sea,
which belongs presently to the bathyal zone,
between approximately 450 and 650 m,
where it is the dominant brachiopod with up
to 46 individuals per square meter (FOSTER,
1974).

Other Factors

As suspension feeders, brachiopods re-
quire good circulation of the water. Seawater
constituents also play a role in the ecological
requirements. Some are used for formation
of the shell and their rate of assimilation may
have a direct influence on growth of the
shell. Calcium ions, which are taken up from
the seawater primarily by the lophophore,
move through the coelomic system into the
mantle and are eventually deposited in the
inner layer of the shell. Yet the major source
of inorganic phosphate for shell formation in
Glottidia pyramidata is likely to be food and
not seawater (PAN & WATABE, 1988a).

On the Florida coast, Glottidia pyramid-
ata, together with the lancelet Branchiostoma
caribbaeum, are sensitive to deterioration of
water quality and, thus, are used as indicator
organisms of unspoiled areas and uncon-
taminated waters in determining suitability
for fishing.

Taphonomy

Recent ecological statements on tapho-
nomic conditions of living lingulides (EMIG,
1986, 1990) have been corroborated by re-
interpretations of fossil beds (Fig. 414). The
natural death of the lingulides leads to the
extrusion of the animal from its burrow
(WORCESTER, 1969; EMIG, 1986). The valves
become separated, and the organic matrix
degrades rapidly due to hydrolysis, microor-
ganisms, and mechanical abrasion. The thin,
fragile, chitinophosphatic valves are reduced
to unrecognizable fragments, the deteriora-
tion occurring from the margins to the cen-
tral portion of the valve; and in general after
two or three weeks the valves have com-
pletely disappeared from the sediment
(EMIG, 1983a, 1990). This explains why only
a catastrophic event, occurring over some
days, is the most significant source of mortal-
ity with respect to preservation of the shell
and ultimate fossilization because there is
little potential for fossilization in normal
environments (EMIG, 1986). Consequently,
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fossil lingulides are not indicators of their
biotopes but of drastic environmental
changes that led to their burial.

Fossilization can occur either in situ in life
position, for example, in conditions of rapid
temperature decrease, salinity increase, des-
iccation, emersion of the substratum or drop
of sea level, or very fine sedimentation; or it
can occur as flat-lying disarticulated valves,
for example, after prolonged reduction of
salinity, coarse-grained sedimentation, and
storms (EMIG, 1986). Data obtained for liv-
ing species obviously apply to the interpreta-
tion of fossils (EMIG, 1986). Nevertheless
survivorship under abnormal conditions can
vary according to the geographical popula-
tion and depends also on the synergy of the
applicable environmental factors on a given
population.

When salinity increases to 40 to 50‰, the
death of populations occurs in burrows in a
few days. Osmotic pressure empties the ani-
mal of its coelomic fluid, and the pedicle
becomes detached from the shell. When the
salinity decreases below 16 to 18‰, death
occurs in one day to several weeks and quick-
ens with lowering salinity, although the sa-
linity of interstitial water remains high for
several days. Individuals leave their burrows
as their bodies swell under osmotic pressure,
and pedicles become limp or detached. The
putrefaction of the soft body causes separa-
tion of the valves, which are then spread over
the sediment surface. Shells rarely float, but
it has been reported (EMIG, 1981b). At a sa-
linity of 18‰, the initial body weight in-
creases by 3.3 percent in three hours; at 5‰,
it increases by 3.8 percent in one hour.
Weight then remains constant for about two
hours followed by another weight increase
that is lethal (HAMMEN & LUM, 1977). Re-
duced salinities in rapid transition are toler-
ated, for example, during tidal cycles in es-
tuarine or deltaic environments where the
salinity can drop to less than 10‰. Several
observations have reported high mortality
after heavy rains of two to three days’ dura-
tion causing nearby rivers to flood (PAINE,

1963; SOOTA & REDDY, 1976; EMIG, 1986,
and personal observations, 1983). Neverthe-
less from experimental results the duration of
survivorship to low salinity is variable among
species. At a salinity of 15‰, Lingula ana-
tina in Queensland (Australia) resists longer
than Lingula reevii in Hawaii, while Glottidia
pyramidata in Florida has a greater survivor-
ship than populations of Lingula.

During an exceptional storm often associ-
ated with heavy rains, the sediment is
churned up, and the lingulides are washed
onto the shoreline and may form shell
masses up to 75 cm high (RAMAMOORTHI,
VENKATARAMANUJAM, & SRIKRISHNADHAS,
1973; HAMMOND, 1983; EMIG, 1986).

When the sea level drops through tec-
tonism, regression, or high sedimentation,
the animal retreats with the water level un-
til it reaches the bottom of its burrow where
death occurs in about three days.

Experiments on Lingula anatina in New
Caledonia with decreasing temperatures

FIG. 414. Diagram summarizing the effects of abiotic
factors that may induce lingulide fossilization (new).
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show that below 15 to 17°C (the lowest tem-
perature in natural conditions is 18 to 19°C)
individuals go down to and remain at the
bottom of their burrows. At 6 to 10°C an ir-
reversible retraction of the mantle occurs
over several millimeters from the shell mar-
gins leading to death within one to three
weeks because the lingulides are unable to
form their pseudosiphons, and, conse-
quently, the pallial water streams are highly
perturbed (C. EMIG, personal unpublished
data, 1983). Mantle regression has been ob-
served in both inarticulated and articulated
brachiopods, but a factor specifically
responsible for this regression is identified
for the first time herein.

When the temperature drops below 10°C
in Florida, Glottidia pyramidata does not re-
spond to any stimuli, although slow warm-
ing after three days at low temperature pro-
duced signs of activity at 12°C (PAINE,
1963).

Muddy sediment with more than 35 to 40
percent of very fine fraction (< 50 µm) de-
posited over original sandy bottoms leads to
the death of lingulides within their burrows
in several weeks. A lingulide can maintain
only sporadically its normal position before
collapsing into the sandy layer, and this gen-
erally leads to death by debilitation. This
observation is of paleoecological importance.
When lingulide valves occur at the bottom of
a shale overlying a sandstone, the sandstone
unit is the normal substrate of the lingulides
that are sometimes fossilized within their
burrows. The shale cannot be interpreted as
the normal substrate for lingulides but as a
deposit of muddy sedimentation that was
responsible for the death of the lingulide
population. Conversely, coarse sedimenta-
tion (> 0.5 mm) leads to the emerging of the
lingulides at the sediment surface and finally
lying on the surface.

 The shallow-water species Discinisca
tenuis occurs intertidally at a few localities. It
is known in the Walvis Bay area (Namibia)
where large deposits formed by huge num-
bers of shells are washed up onto the beach.
Its occurrence along the Namibian coast is
linked to the existence of the Benguela up-

welling system. Such deposits totally domi-
nate the littoral sediment (HILLER, 1993). A
correspondence is suggested with the Esto-
nian Lower Ordovician obolid conglomer-
ates, which are likely to have formed under
similar conditions of upwelling.

BIOTIC FACTORS

Nutritional sources

Sources of nutrition are known for only a
few lingulide species. The type and abun-
dance of ingested particles as well as the im-
portance of direct absorption of nutrients
depend on such factors as season, depth, and
geographic area. Analyses of gut contents of
Lingula reevii from Hawaii (EMIG, 1981b)
show the presence of two types of food: a
vegetal fraction, mainly phytoplanktonic and
consisting of diatoms, peridinians, and fila-
mentous algae, and an animal fraction,
mainly from the superficial meiobenthos and
macrobenthos, i.e., foraminifers, rotifers,
polychaetes, oligochaetes, and copepods.
Both fractions are mixed with a constant
amount of sedimentary particles of 2 to 3 µm
and various organic detritus (e.g., spicules
and spines). Glottidia pyramidata ingests par-
ticles smaller than 125 µm in diameter, in-
cluding sand grains and various vegetal and
animal matter, Coscinidiscus, gastropod ve-
ligers, nauplii, and even Glottidia eggs
(PAINE, 1963). Food particles from the sedi-
ment-water interface may be readily resus-
pended by tidal or bottom currents or waves,
by arm shaking of ophiurians, or by holothu-
rians.

Direct absorption of dissolved nutrients is
known to occur in the lophophorates. The
lophophore in lingulides (STORCH &
WELSCH, 1976) appears to be able to absorb
directly dissolved organic matter from seawa-
ter. There is also evidence that digestion oc-
curs in the lophophore, attested to by the
presence within the tentacles of alkaline
phosphatase and three esterases (STORCH &
WELSCH, 1976). Like the phoronids,
lingulides are able to live in aquaria for some
weeks without having the water changed.
Glottidia pyramidata can be maintained at
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least three months under starvation condi-
tions without apparent loss of vitality (PAINE,
1963).

The body weight of Lingula anatina var-
ies from 0.13 g for a shell length of 1.35 cm
to 5.19 g for a shell length of 4.25 cm. (The
mean value is 2.24 g for a length of 3.19 cm;
n=346; KAWAGUTI, 1943.) The body weight,
like the shell height, increases more rapidly
than the shell length. The weight:length ra-
tio of Glottidia pyramidata changes at a
length of approximately 8 mm correspond-
ing to the development of gonads (PAINE,
1963). In Lingula this development occurs at
a shell length of 1.5 to 2 cm.

Predation

Lingulides are eaten by such crustaceans as
hermit, stone, and portunid crabs, crango-
nids, stomatopods, shrimps, and amphipods
(PAINE, 1963; WORCESTER, 1969; CULTER,
1979; EMIG & VARGAS, 1990). The asteroid
Luidia clathrata is an important predator of
Glottidia pyramidata. Forty-three percent of
the Luidia collected contained Glottidia
shells with little selectivity for size for shells
less than 1 cm long, suggesting that larger
individuals may withdraw too deeply into
the sediment to be preyed upon. Other echi-
noderms are also reported as predators, such
as the ophiuroid Amphipholis germinata and
the echinoid Encope stokessi (EMIG & VARGAS,
1990). Gastropods (mainly naticids and
muricids) are only occasional predators of
lingulides, but bored valves can represent up
to 14 percent of the valves recovered from
the sediment (PAINE, 1963). Dead shells of
craniids are sometimes drilled by gastropods
(LEE, 1987).

Lingula parva has been recorded during
the dry period (March to September 1953)
along the Sierra Leone and Nigerian coasts in
the stomachs of several demersal fishes
(LONGHURST, 1958; ONYIA, 1973). Several
tens of Glottidia pyramidata shells have been
recorded in stomachs of sturgeons and vari-
ous rays along the Florida coast. The mud
flats inhabited by Glottidia audebarti are vis-
ited seasonally by migratory birds, and at
least 13 species were observed foraging at low

tide (VARGAS, 1988); stomach contents of
the willet Catoptrophorus semipalmatus but
more frequently the short-billed dowitcher
Limnodromus griseus revealed that G. aude-
barti is an important food item. Catoptro-
phorus semipalmatus and the fish Symphurus
plagiusa are known predators of Glottidia
pyramidata, which is their main source of
food (PAINE, 1963). People also eat Lingula
anatina and L. rostrum on almost all the
western Pacific islands from Japan to New
Caledonia.

Parasites

Unencysted metacercariae of trematodes
of the subfamily Gymnophallinae (usually
one to three in an individual) have been sea-
sonally recorded around the nephrostomes
and in the gonads of Glottidia pyramidata,
mainly at the end of summer and in autumn.
The infestations can reach 68 percent of the
population. These parasites can reduce or
destroy the gonads and have a secondary in-
fluence on the digestive glands and mantle
canals (PAINE, 1962a, 1963). Adult parasites
are likely to occur in avian predators of G.
pyramidata. The occurrence of two species of
poecilostomatoid copepods, Parostrincola
lingulae and Panjakus platygyrae, associated
with Lingula anatina has been reported from
Hong Kong (HULMES & BOXSHALL, 1988).
Zooxanthellae are abundant within the di-
gestive gland of Lingula (KIRTISINGHE, 1949),
and monocystid protozoa have been reported
in Neocrania.

FAUNAL RELATIONSHIPS

Communities

Soft-substrate communities.—By their gen-
eral characteristics, lingulides are nearly
stable in their evolutionary state. They
present all the features of a dominant group
within a community (EMIG, 1989a): low
growth rate, uniformity of shape, larger size
than the other members of the community,
long life span, low recruitment potential,
generally just higher than the population
replacement (K-demography), and long geo-
logical range. Such characteristics allow high
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biomass to develop related to the available
energy and result in an excellent ability to
integrate and conserve energy. Such a domi-
nant group generally shows plesiomorphic
characters compared to other taxa.

Few lingulide communities have been
studied. Data on the macrobenthic fauna are
given in Tables 38 and 39. Lingula anatina
has been investigated in the Mutsu Bay
(northern Japan) in fine sands and muddy
sands from 4 to 18 m depth (TSUCHIYA &
EMIG, 1983); on the west coast of Korea in a
tidal flat of silty sands from -2.5 to 2.3 m
(AN & KOH, 1992) where the number of
species collected monthly varies from 28 to
41; in Taiwan in a tidal flat of fine, sandy
mud (DÖRJES, 1978); in Phuket Island
(Thailand) in front of a mangrove in an in-
tertidal, large, bay-shaped, fine-sand flat
dominated by molluscs, mainly the gastro-
pod Cerithidea cingulata, where the other
most abundant animals are the fiddler crab
Uca lactea and the sipunculid Phascolosoma
arcuatum (FRITH, TANTANASIRIWONG, &
BHATIA, 1976). In New Caledonia in associa-
tion with the seaweed Halodule on coarse
sands the macrofauna is dominated respec-
tively by Lingula anatina, molluscs (mainly
the bivalve Gafrarium tumidum and a gastro-
pod Cerithium sp.), and polychaetes (mainly
Caulleriella sp.) (BARON, CLAVIER, & THO-
MASSIN, 1993). Glottidia audebarti recorded
in Costa Rica (VARGAS, 1988; EMIG & VAR-
GAS, 1990) in mud flats exposed only at a
tide level below 0.1 m has an associated
macrofauna composed mainly of deposit
feeders; the meiofauna comprises 88 percent
nematodes, 6 percent foraminifers, and 3
percent ostracodes. Glottidia pyramidata oc-
curs in Sapelo Island (Georgia, USA) in the
Moira-atrops community located between 10
and 13 m depth in coarse, relict sand domi-
nated by polychaetes followed in importance
by crustaceans, but the fauna shows a gener-
ally low density (DÖRJES, 1977). In Winyah
Bay (South Carolina, USA) it occurs in me-
dium- to fine-grained sands from 6 to 11 m

(DOLAH & others, 1984). Near Charleston
Harbor (Florida, USA) it is present in coarse
to fine sands from 8 to 17 m (DOLAH,
CALDER, & KNOTT, 1983) with the highest
density being at 17 m. In Tampa Bay
(Florida, USA) the reestablishment of a
benthic community following natural
defaunation by red tide has been studied in
an intertidal sand flat (SIMON & DAUER,
1977).

The associated fauna of other locations is
briefly listed here. On the western Korean
coast Lingula anatina occurs in sand to sandy
mud flats with many other such endobiont
species as polychaetes, crabs, and molluscs,
which are dominant quantitatively (FREY &
others, 1987). In a New Hebridian man-
grove community L. anatina occurs seaward
of the Rhizophora zone dominated by gastro-
pods and crabs (MARSHALL & MEDWAY,
1976). On the western African coast L. parva
occurs in the Venus community, particularly
at the Venus-Amphioplus transition (LONG-
HURST, 1958). In the Ebrié Lagoon (Ivory
Coast) L. parva occurs in a shallow, sandy
substrate in the Corbula trigona community
in which the main species are 12 polychaetes,
9 gastropods, 14 bivalves (dominant), and
10 crustaceans (ZABI, 1984). In Ambon, L.
rostrum occurs midlittorally seaward of a
mangrove stand and on a sandy beach lo-
cated between the ocypodid zone and the
clypeasterid zone (EMIG & CALS, 1979). In a
benthic survey on the eastern coast of India
(BHAVANARAYANA, 1975) a Lingula-Solen zone
was reported, almost exclusively populated
by both taxa in considerable numbers. Off
the Californian coast, Glottidia albida occurs
at high density in the Amphioplus commu-
nity inhabiting a compact, fine, sandy sub-
strate although it has also been recorded in
several other communities, including the
Listrolobus, Amphioda, Nothria, and Tellina
communities (JONES & BARNARD, 1963). In
Mission Bay (San Diego, California), G.
albida occurs with a macrofauna dominated
by 65 percent polychaetes, 15 percent
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molluscs, and 11 percent crustaceans, with
mean density from 621 to 1,874 individuals
per square meter (DEXTER, 1983). On the
coasts of Florida, Glottidia pyramidata is of-
ten associated with the lancelet Bran-
chiostoma caribbaeum, polychaetes, cuma-
ceans, and amphipods; and its biomass,
which has a mean value of 35 percent, can
reach up to 75 percent of the total biomass
of the benthic invertebrates. G. pyramidata
occurs also in the biocoenosis of well-sorted,
fine sands with the phoronid Phoronis
psammophila (PAINE, 1963; EMIG, 1983b).

The associated fauna within a given com-
munity seems to play a minor role in lin-
gulide distribution (EMIG, 1984a). Neverthe-
less, when the density of Lingula increases
there is a small decrease in the total number
of species with an increase of the total num-
ber of individuals; when the density of
Glottidia increases the total number of spe-
cies and individuals tends to increase. Com-
parisons of the distribution of the major
groups (Table 38–39) with the increase of
density of lingulides show in western Korea
that polychaetes (number of species and in-
dividuals) and crustaceans (number of spe-
cies) tend to decrease, while echinoderms,
mainly suspension feeders, tend to increase
or to appear; in the Mutsu Bay, polychaetes,
the dominant group, molluscs, and crusta-
ceans tend to decrease; with the muddy frac-
tion increasing with the depth there is a gen-
eral decrease in the fauna. Near Charleston
Harbor the number of individuals of mol-
luscs and the number of individuals and spe-
cies of polychaetes tend to increase, while on
the southwestern coast of Florida opposite
variations of the densities have been ob-
served over a year between polychaetes, crus-
taceans, and Glottidia.

Polychaetes are generally the dominant
group in numbers of individuals and species
followed by molluscs or crustaceans (see
Table 38–39). The presence of molluscs is
not fundamentally related to the distribution
of lingulides (BABIN & others, 1992). An-
other important feature is the large number
of species and individuals of the associated
fauna (Table 38–39), which should be taken

into account when analyzing taphonomic
factors to explain the poor, associated fauna
found in paleocommunities or when specu-
lating about diversity of the fossils. In fossil
assemblages lingulides are often the only fos-
sils found, indicating either that other kinds
of organisms were not preserved or that the
biocoenosis was oligotypical (EMIG, 1989a).
The occurrence of such a monospecific as-
semblage of fossils requires an extensive
analysis of the environmental constraints and
of the characters of the occurring species to
identify any patterns of the original commu-
nity. The oligotypical biocoenosis presents
one or several of the following characteris-
tics: low-energy input resulting from the ef-
fects of climatic factors, extreme harshness
due to edaphic factors reducing the physiol-
ogy of the individuals, or high daily or sea-
sonal variations of the edaphic and climatic
factors. Thus the biocoenosis is characterized
by high dominance in faunal and environ-
mental features and develops conservatism
with highly reduced capacity for organisms
to evolve.

Hard-substrate communities.—In the deep
parts of the slope in the Antarctic regions
(FOSTER, 1974), Pelagodiscus atlanticus is as-
sociated with a very meager fauna. In the
lagoonal complex of Cananéia, Brazil
(TOMMASI, 1970b), Discinisca sp. has been
recorded at 6 and 8 m depth on a rocky-sand
bottom with the following macrofauna:
polychaetes respectively 600 and 60 indi-
viduals per square meter (10 and 18 percent
of the fauna), molluscs 1,170 and 30 (19 and
9 percent), decapods 380 and 150 (6 and 46
percent), amphipods 2,900 and 0 (47 per-
cent), others 1,080 and 70 (18 and 21 per-
cent), and Discinisca 10 and 20 (0.2 and 6
percent). In the Bahia Conceptión, Chile,
Discinisca lamellosa occurs in the intertidal
zone with a meager fauna of one cnidarian,
one nemertine, two molluscs, two polycha-
etes, and one to three crustaceans (URIBE &
LARRAIN, 1992). In Baja, California, Discra-
disca strigata lives under cobbles and small
boulders, patchily distributed on an exten-
sive sandy beach and extending down to the
low-water mark (PAINE, 1962b) where it is
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associated with sponges, gastropods, and
bivalves. The fractional area covered by epi-
fauna averaged 49 percent, and free space
ranged from 32 to 74 percent on a rock area
from 21 to 116 cm2: D. strigata covered 2 to
26 percent of the surface, bryozoans 5 to 38
percent, serpulids 2.5 to 29 percent, spiror-
bids 0.01 to 7.3 percent, and sponges 0.5 to
8.2 percent.

Neocrania anomala is recorded in shallow
waters under rocky surfaces together with a
sciaphilic fauna. It also occurs deeper in the
sublittoral zone with a fauna dominated by
sponges, cnidarians, spirorbid worms, and
bryozoans, and on the continental slope be-
low 100 m on smooth, fine-grained, hard
substrate to large rocks, particularly within
the community dominated by the brachio-
pod Gryphus vitreus. N. anomala is also re-
corded in Scottish lochs with hydroids,
sponges, chitons, foraminifers, and molluscs
(CURRY, 1982) and in the Strait of Messina
between 80 and 200 m under conditions
where there are bottom currents where the
macrofauna is dominated by anthozoans
(eight species), bryozoans (31 species), anne-
lids (14 species), molluscs (20 species), crus-
taceans (5 species), and echinoderms (2 spe-
cies) (DI GERONIMO & FREDJ, 1987).
Neocrania huttoni forms part of a distinctive
rocky substrate community with calcareous
algae, sponges, serpulids, ascidians, bivalves,
barnacles, and bryozoans including a variety
of filter feeders (LEE, 1987). N. lecointei is
associated with a varied fauna that includes
corals, polychaetes, ophiuroids, bryozoans,
and ascidians (FOSTER, 1974). N. pourtalesi
occurs not uncommonly throughout some
communities of cryptic habitats of coral
reefs, where brachiopods and sponges are the
dominant taxa (JACKSON, GOREAU, & HART-
MAN, 1971). Craniscus occurs in Japan with
an associated fauna that comprises mainly
molluscs and two articulated brachiopod
species, Dallina and Terebratulina (HATAI,
1940).

Population structure

Because the distribution of lingulides is
controlled by environmental factors, annual

fluctuations in density are highly variable
even within a restricted geographic area.
Episodic failure of recruitment observed in
lingulide populations can be related to such
causes as protracted breeding season, bad
environmental conditions for settlement,
food supply, and interactions with the sur-
rounding fauna including predation.

Some authors (PAINE, 1970; KENCHING-
TON & HAMMOND, 1978) have raised the
question of unidentified factors affecting the
absence of lingulides in apparently suitable
sediments. Actually the distribution of
lingulides is restricted within the limits of
the biocoenosis in which a lingulide species
is living, even if preferred substrates occur
beyond the limits of the community (EMIG,
1984a, and personal unpublished data,
1983).

Shell epibionts

Epibionts preferentially settle on the hard
substrate provided by the brachiopod shell.
According to the infaunal habit of lingulides,
almost all epibionts are restricted to the an-
terior margins of the valves because only
these margins are accessible and are not dis-
turbed during withdrawal into the burrow.
Cyanobacteria, however, frequently extend
to the umbonal region along the margins.

In one locality the following macro-
organisms were recorded from 5,000 Lingula
shells (WORCESTER, 1969): 10 occurrences of
algae, 14 anemone Aptasia, many bryozoans,
2 polychaetes, 6 barnacles, 1 amphipod and,
on 16 percent of the shells, the limpet
Cruciblum spinosum. From a large list of
epibionts (represented by two algal divisions
and six animal phyla) on the shells of Lingula
anatina and L. reevii (HAMMOND, 1984), the
most commonly recorded taxa are cyano-
bacteria (frequency up to 30 percent),
polychaetes (frequency up to 45 percent),
barnacles (frequency up to 20 percent), lim-
pets (frequency up to 16 percent), bryozoans
(frequency up to 11 percent), and traces of
the attachment of the egg cases of gastropods
or the byssal threads of mussels (frequency
up to 29 percent). In only ten percent of the
infested Lingula were both valves affected.
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Algae, specifically Enteromorpha sp., estab-
lished itself only on those valves that had
regeneration scars (PAINE, 1963). The hy-
droid Campanulatiidae Clytia can occur on
up to 20 percent of lingulide individuals
with a shell length exceeding 1.4 mm.

An unidentified leptocean bivalve (per-
haps Euciroa) is found byssally attached to
the shell of Lingula anatina (SAVAZZI, 1991)
in densities of up to nine individuals per
shell. The posterior region of the bivalve
shell is oriented upward, located at the ante-
rior margin near the exhalant currents of the
brachiopod. The bivalve progressively mi-
grates upward as is shown by a trail of byssal
filaments left along their paths to compen-
sate for growth of the Lingula shell. The bi-
valve feeds on feces of L. anatina. Lingulides
were found to carry gastropods near the an-
terior margin. Egg capsules of gastropods
occurred seasonally on the anterior margins
of the valves of lingulides; up to 45 Nassarius
and up to 5 Olivella egg capsules were found
on a single individual of Glottidia pyra-
midata.

Epibionts like the worm Polydora or the
mollusc Brachiodontes may benefit from
lingulide inhalant currents, but their pres-
ence can have detrimental effects by causing
distortion of the shell of the host (PAINE,
1963; HAMMOND, 1984). The number of
worms on a valve varies from one to six, with
a typical number of three or four while the
number of small Brachiodontes may be as
many as five.

Among the craniids, Neocrania shells fre-
quently bear encrusting organisms including
bryozoans, serpulids, barnacles, calcareous
algae, and sponges. Most valves carry more
than one epibiont, and the percentage of the
cover can reach 95 percent.

In some specimens of Discradisca laevis,
great numbers of full-grown Pedicellinae
adhered to the long, barbed setae (DAVIDSON,
1880). One-third of the Discradisca shells
(17 percent of the total valve area) bore
epizoans, primarily bryozoans and spiror-
bids, and occasional other Discradisca, serpu-
lids, and small sponges.

Competitive interactions

Mechanisms of competitive interaction
are likely to be characteristic of the discinids
and may have been important in ensuring
the success of the living genera since their
earliest known occurrence in the Triassic
(ROWELL, 1961). The only work that has
addressed the competitive abilities of
inarticulated brachiopods deals with
Discradisca strigata, which invariably wins
competitive interactions for space with other
sessile epifauna (LABARBERA, 1985). One
such competitive interaction is metamor-
phosis on the surface of bryozoan colonies
facilitated by a reversal of the flow patterns
and the possession of a functional anterior
siphon that allows juveniles to draw water
from above the bryozoan’s lophophores, so
that mature individuals eventually usurp the
space occupied by the colony. Another inter-
action is maintenance of a pool of particle-
depleted water around most of the shell of
larger juveniles and adults, which probably
inhibits encroachment by bryozoans and
sponges. In addition, abrasion of underlying
calcareous epifauna by the harder phosphatic
shell occurs, which erodes these faunal ele-
ments to the level of the substrate. Numer-
ous eroded epizoans occur under the ventral
valves of Discradisca although no abrasion of
the valves themselves was seen. The edge of
these valves probably abrades neighboring
organisms during rotation of the shell even
of juveniles, and it is probably made more
effective by the simultaneous sweep of lateral
setae that mechanically damage the tissues of
surrounding sponges and bryozoans.

Three of these mechanisms are not avail-
able to articulated brachiopods, and the
fourth is apparently not exploited, which
may explain differences in competitive abili-
ties between inarticulated and articulated
brachiopods. Numerous examples of appar-
ent spatial competition between D. strigata
and other epifauna, particularly sponges and
bryozoans, have been recorded (LABARBERA,
1985); but this species was spatially domi-
nant on only 3 of the 11 rocks investigated,
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even though it dominates in competitive in-
teractions; and no individual appeared to be
in any danger of overgrowth. In discinids the
foramen, which is more centrally located
than in articulated brachiopods, affords
greater protection for the pedicle and ensures

that the entire shell margin, including re-
gions adjacent to the pedicle, sweeps through
a sizeable arc when the animal rotates. This
inhibits growth of epifauna at a greater dis-
tance from the shell than is possible for ar-
ticulated species.





BIOGEOGRAPHY OF  INARTICULATED
BRACHIOPODS

CHRISTIAN C. EMIG
[Centre d’Océanologie de Marseille]

INTRODUCTION

The distribution of the inarticulated
brachiopods is largely controlled by environ-
mental factors (see chapter on ecology of
inarticulated brachiopods, p. 473–495).
Most of the inarticulated genera have broad
geographic distributions on which the dis-
persal potential of the larvae has had only a
small influence; lingulides and discinids have
planktotrophic larvae, while craniids have
short-lived, lecithotrophic larvae. The differ-
ences between species in their ecological re-
quirements are more related to their ability
to settle, which is induced by biotic or abi-
otic factors of the biocoenosis to which the
species belongs. All adult inarticulated
brachiopods are exclusively sedentary.

PATTERNS IN DISTRIBUTION

Because the biogeographic analyses of the
inarticulated taxa, especially discinids and
craniids, cannot presently be based on infra-
generic and subtle ecological distinctions or
broad geographic records, this account will
be limited to the distribution of the genera.
Many published records are deficient in pre-
cise information on the biogeography and
ecology of species. Sampling inarticulated
brachiopods at depths beyond the range of
scuba may also present a misleading picture
of brachiopod distribution and abundance.
The use of submersibles provides reliable
information only on large species that can be
observed directly or by video. Another factor
that introduces bias is the propensity of
craniids and discinids to settle on more or
less extensive, hard substrates that are
difficult to investigate with traditional
oceanographic sampling gear. Furthermore,
the attention paid to brachiopods in benthic
studies and during oceanographic cruises is
frequently perfunctory so that large gaps

persist in our knowledge of the distribution
and ecology of inarticulated species.

Populations of inarticulated species un-
dergo seasonal to continuous recruitment
depending on their latitudinal distribution.
The early, shelled larvae of the lingulides are
common members of the tropical plankton.
A Lingula female can spawn 28,000 oocytes
over a six-month period, and a Glottidia fe-
male may produce 130,000 ova over a four-
month period. The duration of the plank-
tonic stage of lingulide larvae varies from 3
to 6 weeks (CHUANG, 1959a; PAINE, 1963).

Discinid larvae, at least Discinisca itself,
are also planktotrophic and acquire valves
only in late stages (CHUANG, 1977). Discinid
larvae have been reported from marine
plankton from the water surface to depths of
3,000 m, sometimes at great distances from
the shore (HELMCKE, 1940; ODHNER, 1960;
CHUANG, 1977). Larvae of Discinisca have
been recorded from littoral waters down to
350 m, while discinid larvae recorded from
deep waters belong probably to Pelagodiscus
atlanticus. For example, Pelagodiscus larvae
have been collected with a calculated density
of 2 to 3.5 larvae per 1,000 m3 (MILEIKOVSKY,
1970) between depths of 500 and 2,000 m
in the northwestern Pacific Ocean. Postlarval
specimens dredged from great depths (2,700
to 3,200 m) indicate that Pelagodiscus larvae
become sedentary at different valve sizes.

The lecithotrophic larva of Neocrania
anomala, the only craniid species in which
development has been studied (NIELSEN,
1991), has a short swimming stage of about
four to six days before settlement. Hydrody-
namic conditions that occur in the biotope
of N. anomala (EMIG, 1989b) can disperse
larvae over several hundred kilometers dur-
ing this short stage. Hence, the gregarious
pattern of Neocrania species must be related
to an environmental factor that attracts and
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induces larval settlement close to the adult
forms, not to the short swimming stage of
the larvae.

The upper and lower limits of tolerance to
such factors as temperature, salinity, and
depth have been used generally to explain
the range of geographic distribution of the
species. As stated in the section on the ecol-
ogy of inarticulated brachiopods (Table 37,
p. 484), however, such tolerances can vary
subtly even among populations and have to
be analyzed carefully before being used to ex-
plain the biogeographic distribution of
higher taxa.

DISTRIBUTION OF FAMILIES
AND GENERA

The three extant inarticulated families
have a worldwide distribution. The Lingu-
lidae are dominant in tropical and subtropi-
cal areas; the Discinidae occur mainly in in-
tertropical areas; the Craniidae are widely
distributed from northern to southern high
latitudes, into which the discinid Pelagodiscus
also extends (Fig. 415). The latitudinal dis-

tribution of inarticulated taxa can be globally
related to their bathymetric extension (see
Fig. 413) although more constraints are in-
volved than the temperature, pressure, and
dynamics of seawater.

Most inarticulated genera are cosmopoli-
tan (Fig. 416) and were common in past
eras. Indeed among living brachiopod fami-
lies only the Lingulidae, Discinidae, and
Craniidae can be traced back to the early Pa-
leozoic. The radiations of the inarticulated
species and genera represented in recent ma-
rine faunas (Table 40) are related to geologi-
cal events. Most genera began their develop-
ment in the Cenozoic with the global
biotope changes marking the end of the Cre-
taceous crisis, at the end of the Paleogene
threshold, and during the Neogene as a re-
sult of changes in the circulation of the ocean
waters that allowed the development of
deep-sea species.

LINGULIDAE

Living Lingulidae belong to two genera:
Lingula (seven species), which is worldwide
in distribution, except along the coasts of

FIG. 415. Latitudinal distribution of inarticulated brachiopods (new).
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FIG. 416. Geographic distribution of inarticulated brachiopod genera (new).
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America, where Glottidia (five species) occurs
exclusively (Fig. 416). Large variations in
edaphic factors during the late Mesozoic
(EMIG, 1984b; BIERNAT & EMIG, 1993) are
probably responsible for the radiation of
both genera. Glottidia may have originated
on the western coast of North and Central
America and Lingula possibly in the islands
of the western Pacific. Their latitudinal
distribution occurs within the 40° belt from
temperate to equatorial areas (Fig. 417), and
their bathymetric distribution is restricted to
the continental shelf except for Glottidia al-
bida, which extends onto the upper part of
the bathyal slope. Such a geographic distri-
bution appears to be a consequence of the
opening of the Atlantic Ocean and of the
Paleocene-Eocene extension of the tropical-
subtropical belt to about 45° latitude, with
optimal conditions for the development of
new temperate marine biotopes with good
prospects for speciation. Yet the distribution
of the lingulides appears rather similar at
least since the early Paleozoic when taking
into account the paleolatitudinal positions in
correlation with temperatures of water
masses.

DISCINIDAE

Pelagodiscus atlanticus occurs worldwide in
deep water in the bathyal and abyssal zones
and is undoubtedly the most widespread
brachiopod species geographically and
bathymetrically (Fig. 416–417). Discinisca
(four species) and Discradisca (six species)
have a warm-temperate to tropical, cosmo-

politan distribution and extend mainly over
the continental shelf. Discina striata has a re-
stricted distribution in the intertropical zone
of the western coast of Africa.

CRANIIDAE

Neocrania (13 species) has a worldwide
distribution (Fig. 416). Its latitudinal range
is as wide as that of Pelagodiscus, but its
bathymetric distribution is from shallow
waters of the continental shelf to about
1,000 m depth on the bathyal slope (Fig.
417). Only one species, Neocrania lecointei,
is recorded in the deeper parts of the bathyal
zone (to 2,342 m). The two other genera
have restricted distributions. Craniscus japon-
icus occurs in the western Pacific from 23 to
885 m, while Valdiviathyris quenstedti is
known from a single location at 672 m. Neo-
ancistrocrania norfolki has been collected in
two locations of the South Pacific Ocean at
233 and 250 m depth.

All three inarticulated brachiopod families
are of ancient stocks and are fairly cosmo-
politan in distribution, extending from the
shoreline to the bathyal depths. Most species
have a distribution restricted to the 45° lati-
tudinal belt and occur on the continental
shelf from intertidal to a depth of about 100
m. Species extending to latitudes higher than
45° occur also in the bathyal zone (between
about 100 and 3,000 m). Their bathymetric
extent, however, is limited mainly to the
upper bathyal part (to 1,000 m). Only Pel-
agodiscus atlanticus, one of the most recent
species, is widespread in the abyssal zone
(3,000 to 6,000 m). Species of the two
monospecific genera Discina striata and Val-
diviathyris quenstedti and also Neoancistro-
crania norfolki, which is said to be recent as
well, have a restricted geographic and bathy-
metric distribution (Fig. 416–417).

In contrast to the lingulides, speculating
on the origins and paths of dispersal of the
discinids and craniids is difficult. The
present distribution of inarticulated taxa
cannot be explained as the consequence of
their age or their dispersal rate as suggested
for the taxa of articulated brachiopods. The

TABLE 40. First geological record of the inartic-
ulated genera represented in present

marine faunas (new).

Lingulidae Discinidae Craniidae

Triassic Discinisca
Upper Jurassic Craniscus
Paleocene Lingula? Discradisca

Glottidia?
Eocene Neocrania
Miocene Pelagodiscus
Holocene Discina Valdiviathyris?

Neoancistrocrania
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FIG. 417. Latitudinal and bathymetric extension of inarticulated brachiopod genera (new).
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diversification of the genera and the long
geological history of species are relevant to
our understanding of the extent of the
geographic and bathymetric distribution of

inarticulated brachiopods. As ZEZINA (1970)
previously stated the reasons for the
biogeography of supraspecific brachiopod
taxa are elusive.
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