References on Phoronida > 2020 - 2029

 

Dernier changement - Last update - Último cambio : 5 April 2024
 

 

2020 - 2021 - 2022 - 2023 - 2024 -

 

Marine Journals   -   Palaeontological Journals   -   e-Library  -   Phoronida Database

 

 


2024

Sour-Tovar F., González Mora S. & L. Martín-Aguilar, 2024. Fossil Lophophorates: generalities and applications in the interpretation of paleoenvironments. In : Past Environments of Mexico, Springer Geology, p. 99-127.


2023

Gaaloul N., Uchman A., Ben Ali S., Janiszewska K., Stolarski J., Kolodziej B. & Riahi S., 2023. In vivo and post-mortem bioerosion traces in solitary corals from the upper Pliocene deposits of Tunisia. Acta Palaeontologica Polonica, 68 (4), 659-681.
 >>  with supposed phoronid borings attributed to Talpina cf. hackberryensis in coralla of solitary scleractinian corals. - See Comments at fossil phoronids.

Gasiorowski L., 2023. Phoronida - A small clade with a big role in understanding the evolution of lophophorates. Evolution & Development, e12437, 15 p.

Temereva E.N., Isaeva M.A. & I.A. Kosevich, 2023. Unusual lophophore innervation in ctenostome Flustrellidra hispida (Bryozoa). Journal of experimental Zoolog, Part B: Molecular and developmental Evolution, 340 (3), 245-258.

Zhang Z.F., Smith M.R. & Ren X.Y., 2023. The Cambrian cirratuliform Iotuba denotes an early annelid radiation. Proc. R. Soc., B 290 (20222014), 11 p.

Wirtz P., 2023. A pictorial catalogue of the Phoronida of São Tomé and Príncipe. 2 p.


2022

Allport H. A. et al., 2022. Non-palimpsested crowded Skolithos ichnofabrics in a Carboniferous tidal rhythmite: Disentangling ecological signatures from the spatio-temporal bias of outcrop. Sedimentology, 69, 1028-1050.

Andrew-Priestley M. et al., 2022. Benthic infaunal assemblages adjacent to an ocean outfall in Australian marine waters: Impact assessment and identification of indicator taxa. Marine Pollution Bulletin, 174, 113229, 12 p.

Balech B. et al., 2022. MetaCOXI: an integrated collection of metazoan mitochondrial cytochrome oxidase subunit-I DNA sequences. Database, 2022, article ID baab084, 1-6.

Editorial, 2022. Russia’s brutal attack on Ukraine is wrong and must stop. Nature, 603, 201.

Fernández-Alías A. et al., 2022. Nutrient overload promotes the transition from top-down to bottom-up control and triggers dystrophic crises in a Mediterranean coastal lagoon. Science of the Total Environment, 846, 157388174, 15 p.

Gogina M., Zettler A. & M. L. Zettler, 2022. Weight-to-weight conversion factors for benthic macrofauna: recent measurements from the Baltic and the North seas. Earth Syst. Sci. Data, 14, 1-4.

Guo J. et al., 2022. A Cambrian tommotiid preserving soft tissues reveals the metameric ancestry of lophophorates. Current Biology, 32, 4769-4778.

Khalturin K. et al., 2022. Polyzoa is back: The effect of complete gene sets on the placement of Ectoprocta and Entoprocta. Sci. Adv., 8, eabo4400, 13 p.

Koch T. L. et al., 2022. Reconstructing the origins of the Somatostatin and Allatostatin-C signaling systems using the accelerated evolution of biodiverse cone snail toxins. Mol. Biol. Evol., 39 (4), msac075.

Martí-Solans J., Børve A., Bump P., Hejnol A. & T. Lynagh, 2020. Peripheral and central employment of acid-sensing ion channels during early bilaterian evolution. - bioRxiv preprint

McGuinness M. et al., 2022. Abundance and seasonality of phoronid larvae in coastal temperate waters: More abundant than previously thought? Aquat. Ecol., 56, 1315-1321.

Nässel D. R. & S. F. Wu, 2022. Cholecystokinin/sulfakinin peptide signaling: conserved roles at the intersection between feeding, mating and aggression. Cellular and Molecular Life Sciences, 79 (188), 1-28.

Temereva E. N., 2022. Development and structure of the nervous system in phoronids: Evolutionary significance. Neuroscience and Behavioral Physiology, 52 (7), 77-85.

Temereva E.N. & Kuzmina T.V., 2022. Homology of the lophophore and its evolution within lophophorates. Invert. Zool., 19 (4), 433-451.

Toral Almazán E. et al., 2022. Historical observations of zooplankton groups in Mexican waters of the Gulf of Mexico and Caribbean Sea. Arabian Journal of Geosciences, 15 (1215).

Wirtz P., 2022. A pictorial catalogue of the shallow water Phoronida and Entoprocta of the Azores. DOI:10.13140/RG.2.2.32410.52162.

Wirtz P., 2022. A pictorial catalogue of shallow water Phoronida and Entoprocta of the Cabo Verde Islands. https://www.researchgate.net/.

Zeng H. et al., 2022. A Cambrian soft-bodied conical animal illustrates the origins of lophophorate phyla. - bioRxiv preprint

Zhang Z. et al., 2021. The Cambrian explosion of animals and the evolution of ecosystems on Earth (in Chinese). J. Northwest Univ. (nat. Sci ed.), 51 (6), 1066-1106.

 


2021

Clauss W. & Clauss C., 2021. Brachiopoda, Phoronida. In: Taschenatlas Zoologie. Springer Spektrum, Berlin, Heidelberg. https://doi.org 10.1007/978-3-662-61593-5_29

Piovani L., 2021. Testing the homology of metazoan larvae using single cell sequencing data. Doctoral thesis (Ph.D), University College London, 311 p.

Santagata S., 2021. Chapter. 22 Phylum Ectoprocta and Phoronida. In: Invertebrate Zoology: A Tree of Life Approach, CRC Press, p. 341-356.

Thiel D. et al., 2021. Nemertean, brachiopod and phoronid neuropeptidomics reveals ancestral spiralian signalling systems. Molecular Biology and Evolution, 38 (11), 4847-4866.

 


2020

Andrikou A. & A. Hejnol, 2020. FGF signaling induces mesoderm in members of Spiralia. https://www.biorxiv.org/content/10.1101/2020.08.13.249714v1

Gasiorowski L. & A. Hejnol, 2020. Hox gene expression during development of the phoronid Phoronopsis harmeri. EvoDevo, 11 (2), 17 p.

Giribet G. & G. D. Edgecomben, 2020. 53. Phoronida. In: The Invertebrate Tree of Life. Princeton University Press, Princeton, pp. 449-454.

Gravina M. F., Cabiddu S., Como S., Floris A., Padedda B. M., Pusceddu A. & P. Magni, 2020. Disentangling heterogeneity and commonalities in nanotidal Mediterranean lagoons through environmental features and macrozoobenthic assemblages. Estuarine Coastal and Shelf Science, 237, 25 p. https://doi.org/10.1016/j.ecss.2020.106688

Himmel N. J., Gray T. R. & D. N. Cox, 2020. Phylogenetics tdentifies two Eumetazoan TRPM clades and an eighth TRP Family, TRP Soromelastatin (TRPS). Molecular Biology and Evolution, 37 (7), 2034–2044.
Correction published: 2021, Molecular Biology and Evolution, 38 (1), p. 329.

Liu F., Skovsted C. B., Topper T. P., Zhang Z. & D. Shu, 2020. Are hyoliths Palaeozoic lophophorates? National Science Review, 7 (2), 453-469.

Ortega A. & Olivares-Bañuelos T. N., 2020. Neurons and glia cells in marine invertebrates: an update. Frontiers in Neuroscience, 14 (121), 14 p.

Shunatova N. & Borisenko I., 2020. Proliferating activity in a bryozoan lophophore. PeerJ, 8 (9179), 32 p.

Stampar S. N., Reimer J. D., Maronna M. M., Lopes C. S., Ceriello H. K., Santos T. B., Acuña F. H. & Morandini A. C., 2020. Ceriantharia (Cnidaria) of the World: an annotated catalogue and key to species. ZooKeys, 952, 1-63.

Temereva E., 2020. Novel data on the innervation of the lophophore in adult phoronids (Lophophorata, Phoronida). Zoology, 143 (125832).

Temereva E., Shcherbakova T. & A. Tzetlin, 2020. First data on the structure of tubes formed by phoronids. Zoology, 143 (125849).

Wirtz P., 2020. A pictorial catalogue of the Phoronida of Madeira Island. DOI: 10.13140/RG.2.2.21849.13927  -  

Zattara E. E., 2020. Axial regeneration in segmented animals a post-embryonic reboot of the segmentation process. In: Cellular Processes in Segmentation, Taylor, Chapter 10, 38 pp. [313 pp.]