Abstract: An 148 m composite section located in the Gargas area stratotype in southeastern France has been studied for its calcareous nannofossil content. The four sections span the upper Bedoulian to lower Gargasian with the stadial section located within the basal section south of the village of Cla-vaillan. A total of 75 samples was processed to inventory taxonomy and stratigraphic distributions. *Eprolithus floralis* is present at the base of the stratigraphic succession. The lowest occurrence of this species, which marks the base of Subzone NC7A, has been documented in the uppermost lower Aptian *Eprolithus floralis*. A total of 75 samples has been utilized to delineate the base of Subzone NC7B. This subzonal boundary was placed at 15.5 m in the Cla-vaillan section at the base of the *Dufrenoyia furcata* Zone and within the "Niveau Blanc inférieur" marker bed (NB1). The genus *Nannoconus* is abundant to very abundant in all samples examined. Taxonomic rigor has resulted in the recognition of five main morphologic groups (A-E), including all but one of the 15 species discriminated over this relatively short stratigraphic interval. Four main *Nannoconus* assemblage biozones - with one subdivision - have been distinguished through semi-quantitative analyses and organized relative to these taxonomic groupings. Assemblage Biozone B is restricted to the Bedoulian and has been correlated to the upper portion of Subzone NC7A (i.e., NC7A1). Assemblage biozones GI and GII (A-B) have been correlated to the upper portion of Subzone NC7A (i.e., NC7A2) and Biozone GIII to Subzone NC7B within the Gargasian. *Assipetra* is another solution-resistant genus included in semi-quantitative analyses, where its species were separated into small and large forms based on a size of 10 μm. The highest percentages of large morphotypes are within the Bedoulian in the lower 10.5 m of the Cla-vaillan section, roughly coeval to an acme of large *Assipetra* observed in the basal portion of the Serre Chaitieu section in the nearby Vocontian Basin.

Key-words:
- Aptian stratotype;
- Gargasian;
- Bedoulian/Gargasian boundary;
- calcareous nannofossils;
- *Nannoconus*;
- taxonomy;
- biostratigraphy

Résumé : Nannofossiles calcaires du Bédoulien sommital et du Gargasien inférieur de La Tuilière - St-Saturnin-lès-Apt (région du stratotype de l’Aptien, Vaucluse, Sud-Est de la France). - Une coupe composite de 148 m localisée dans la région stratotypique de Gargas (Sud-Est de la France) a été étudiée pour son contenu en nannofossiles calcaires. Les quatre coupes couvrent le Bédoulien supérieur et le Gargasien inférieur. La limite entre Aptien inférieur (Bédoulien) et Aptien supérieur (Gargasien) a été reconnue à la partie inférieure de la coupe basale au sud du village de Cla-vaillan. Un total de 75 échantillons ont été préparés pour l’analyse taxinomique et stratigraphique.

1 Société Axonaïse de Paléontologie, 43, rue du château 02110 Bohain-en-Vermandois (France) bernardlambert271@gmail.com

Published online in final form (pdf) on November 11, 2022

[Editor: Michel MOULLADE; language editor: Simon F. MITCHELL; technical editor: Bruno GRANIER]
1. Introduction

Eproolithus florais est présent dans les premiers échantillons de la succession stratigraphique. La première apparition de cette espèce qui marque la base de la sous-zone NC7A a été documentée dans la partie sommitale de l'Aptien inférieur (Bédoulien) dans d'autres coupes du Sud-Est de la France. La dernière apparition du genre Micrantholithus a été utilisée pour identifier la base de la sous-zone NC7B. Cette limite de sous-zone a été placée à 48 m dans la coupe Les Gays 1 (113.5m dans la coupe composite) en dessous de la première apparition du foraminifère planctonique Globigerinelloides ferreolensis dans l'échantillon du dessus (50 m). La première apparition de Braarudosphaera africana est identifiée comme un horizon régional à l'intérieur de la partie inférieure de la sous-zone NC7A et un repère local pour la limite Bédoulien/Gargasien. Cet événement a été placé à 15,5 m dans la coupe de Clavaillan à la Zone à Dufrenoyia furcata (ammonite) et dans le "Niveau Blanc inférieur" (marqueur NB1). Une attention particulière a été portée aux Nannoconidés toujours abondants à très abondants dans tous les échantillons. Sur cet intervalle stratigraphique relativement court, cinq groupes morphologiques principaux (A-E) avec une quinzaine d'espèces ont été identifiés. Quatre biozones à Nannoconus, dont une subdivisée en deux sous-zones, ont été distinguées. La biozone B est limitée au Bédoulien et a été corrigée à la partie inférieure de la sous-zone NC7A (i.e., NC7A1). Les biozones GI et GII (A-B) ont été corrigées à la partie supérieure de la sous-zone NC7A (i.e., NC7A2) et la biozone GIII à la sous-zone NC7B dans le Gargasien.

Assipetra, un autre genre résistant à la dissolution, a également été pris en considération dans les analyses semi-quantitatives. Ses représentants ont été séparés en petites et grandes formes sur la base d'un seuil de taille de 10 μm. Les taux les plus élevés de grands morphotypes sont reconnus dans les 10,5 m inférieurs de la coupe de Clavaillan (Bédoulien). Cet épisode est à peu près équivalent de l'acmé à grande Assipetra observée dans la partie basale de la coupe de Serre Chaitieu dans le bassin Vocontien voisin.

Mots-clés :
- Aptien stratotype ;
- Gargasien ;
- limite Gargasien/Bédoulien ;
- nannofossiles calcaires ;
- Nannoconus ;
- taxinomie ;
- biostratigraphie

2. The studied area

The four studied sections are located near the hamlet of La Tuilière, included in the village of Saint-Saturnin-lès-Apt (Fig. 1). These sections are the Claussillon Hill, south Pichouraz Hill and the Les Gays Farm area (two sections). For further information about their geographic location, relationships and geological setting, see DUTOUR (2005), and MOULLADE et al. (2006, 2008, 2017).

By compositing these four sections, we estimate the total thickness of Aptian sediments measured in this area at around 148 m (with a gap between the top of Claussillon and the base of Pichouraz East sections, see MOULLADE et al., 2017):
- the Claussillon section comprises the uppermost Bedoulian (sensu ATROPS & DUTOUR, 2005: Deshayesites grandis Zone) and the lowermost Gargasian (Dufrenoyia furcata Zone), 17 samples;
- the south Pichouraz section comprises the lower part of the Gargasian stage (Dufrenoyia furcata Zone), 16 samples;
- the Les Gays sections 1 and 2 slightly overlap the top of the south Pichouraz section and include the lower Gargasian (mainly Dufrenoyia furcata Zone and Cheloniceras martini Zone for the top of the sections), 42 samples (34 for Les Gays 1+ 8 for Les Gays 2).
Figure 1: Geographic location of the area studied. A) Apt area in SE France; B) studied sections; C) Clavaillan area; D) Pichouraz East and South; La Tuilière W; Les Gays 1 and 2.

The average spacing between samples is about 2 m.

MOULLADE et al. (2006, 2017) divided the relatively homogeneous lithostratigraphy in this area into five main units from the base to top:

1. 22 m of marly grey limestones (terminal Bedoulian, Deshayesites grandis Zone);
2. 32 m of blue-grey marls (12 m gap between top Clavaillan section and base south Pichouraz section) framed by two "niveaux blanc" levels (NB1 and NB2);
3. 21 m of bluish grey marls changing into yellowish blue marls in the upper half;
4. 11 m of yellowish marls with centimeter intercalations of marly limestones, limonitic beds, and pyritized-limonitic nodules; and
5. 62 m of soft laminated bluish grey marls.

Details of the composite section and sample levels, in addition to the ammonite and foraminiferal stratigraphies, are summarized in MOULLADE et al. (2017).

3. Materials and methods

Nannofossil preservation is heterogenous in the material studied. For *Nannoconus*, there is no special problem due to the relatively great size and robustness of the specimens, especially in the lower part of the studied sections (Clavaillan). As for the other nannofossils, preservation appears related to the calcium carbonate content. In the Clavaillan section, the sediments are composed of shaly limestones, where the high content in CaCO$_3$ seems to be directly related to the abundance of *Nannoconus* tests and the poor preservation of the other nannofossil components (especially small specimens). In the other sections (i.e., South Pichouraz and Les Gays), marls and calcareous shales are the dominant lithologies and the nannofossils preservation is very good. This basic contrast in nannofossils preservation introduces bias in calcareous nannofossil distributions.

All analyses undertaken on our material are based on optical observations only (no SEM analyses were performed). Two smear slides were
prepared for each sample: One slide with a higher concentration of sediment to investigate all nannofossil components and one slide with a relatively dilute amount of sediment for semiquantitative analyses. No special cleaning methods were used in sample preparations.

The "semi-quantitative" approach employed is unconventional (see LAMBERT & LAPORTE-GALAA, 2005, for further details). This approach did not account for the actual nannofossil abundance, but instead are counts of an individual taxon or a group of taxa to the total nannofossil population. For this exercise, two types of estimates were made:

- for each sample, a minimum of thirty to forty specimens of Nannoconus were both photographed and drawn. This was considered an adequate representation of relative abundance within the genus (see LAMBERT & LAPORTE-GALAA, 2005);
- five hundred specimens of Nannoconus were counted to estimate the ratio of Assipetra infraretacea to A. terebroadentarius.

TREMOLADA and ERBA (2002) have illustrated the importance of the size variation of both A. infraretacea and A. terebroadentarius during Aptian time. These authors noted that large specimens are more frequent in the lower Aptian. We have carried out a semi-quantitative distribution of these two species. Threshold given by these authors is 7.5 µm. However, for operational reasons (technical limitations related to the microscope) we have applied a 10 µm threshold.

We have introduced a new index, the ratio between A.i + A.t and Nannoconus. The estimated frequency have been obtained after counting 500 specimens of Nannoconus. This index allows us to provide a relative frequency of these two nannofossils. The A.i + A.t (big / small with a threshold at 10 µm) ratio have been obtained if the number of specimens is equal to or greater than 50 specimens of Assipetra (in one smear slide). Four intervals can be distinguished:

1. Clavaillan, samples 2385 to 2390, A.i + A.t / N = 12 to 15%, A.i + A.t large forms / A.i + A.t small forms = 40 to 70%.
2. Clavaillan, samples 2391 to 2410, Pichouraz sud samples 2270 to 2286, A.i + A.t / N = lower than 5%, A.i + A.t large forms / A.i + A.t small forms = not applicable (not enough specimens observed).
3. Les Gays 1, samples 2309 to 2321, A.i + A.t / N = 8 to 10%, A.i + A.t large forms / A.i + A.t small forms = 10 to 30%.
4. Les Gays 1, samples 2322 to 2341, A.i + A.t / N = lower than 1%, A.i + A.t large forms / A.i + A.t small forms = Not applicable (not enough specimens observed).

4. Biostratigraphy

Nannoconid assemblage biozones. Four local Nannoconus assemblage zones - including one divided into two subzones - have been recognized in the materials studied (Figs. 2, 4) and integrated with the event stratigraphy (see § "Nannofossil biozonation" below):

1. Biozone B (Bedoulian): Clavaillan 2385 to 2393 samples
 - Group E, N. wassallii (abundant);
 - Group D, N. bucheri (abundant);
 - Group C, N. quadriangularis (rare);
 - Group B, N. circularis (abundant);
 - others: N. elongatus (rare), N. steinmannii (very rare).

2. Biozone GI (Gargasian): Clavaillan samples 2394 to 2410 samples, south Pichouraz samples 2270 and 2272. The complete Nannoconus association is as follows:
 - Group E, N. aff. grandis (rare), N. kamptneri (rare), N. bonetii (present), N. wassallii (abundant), N. clavaillanensis (present);
 - Group D, N. bucheri (abundant), N. vocontiensis (rare);
 - Group C, N. quadriangularis (rare), N. inconspicuus (rare);
 - Group B, N. circularis (abundant);
 - Group A, N. boletus (rare).

3a. Biozone GII (Subzone GIIA): south Pichouraz samples 2274 to 2292
 - Group D, N. bucheri (rare), N. vocontiensis (abundant);
 - Group C, N. quadriangularis (rare);
 - Group B, N. globulus (present), N. circularis (abundant);
 - Group A, N. boletus (rare);
 - drastic reduction of Group E at the base of the unit.

3b. Biozone GII (Subzone GIIB): south Pichouraz samples 2295 to 2300, Les Gays 1 Samples 2306 to 2327
 - Group D, N. bucheri (rare), N. vocontiensis (abundant);
 - Group C, N. quadriangularis (rare);
 - Group B, N. globulus (present), N. circularis (abundant);
 - Group A, N. boletus (rare), N. carniolensis (rare).

4. Biozone GIII, samples Les Gays 1 samples 2332 to 2343, Les Gays 2 samples 2346 to 2301
 - Group C, N. quadriangularis (very abundant);
 - Group A, N. boletus (present);
 - extinctions of Groups B and D at the base of the unit.
Figure 2: Semi-quantitative Nannoconus distributions.
A = N. boletus / N. carniolensis
B = N. aff. globulus (dark yellow), N. circularis (light yellow)
C = N. truittii, N. inconspicuus, N. quadriangulus
D = N. bucheri (dark green), N. vocontiensis (light green)
E = N. wassallii (dark brown); N. aff. borealis / N. bonetii / N. kamptneri (yellow brown)

Nannofossil biozonation: The standard NC zonation of Roth (1978), as emended by Bra-LOWER et al. (1993), is employed herein for consistency with previous regional studies in southeastern France. The following stratigraphic subdivisions are proposed for this study (Fig. 3):
- Lower Subzone NC7A1: Clavaillan samples 2385 to 2393
 The interval from the first occurrence of Epro- lithus floralis (present at the base of the com- posite section) to the first occurrence of Braarudo- spaera africana. The lowest occurrence of Br. africana is in Sample 2394 (15.5 m) in the Clavaillan section. This interval contains Nannoconus assemblage Biozone B. The highest abundances of Assipetra and highest percentages of large morphotypes (> 10 μm) relative to small are re- stricted to the lower 10.5 m (sample 2390 and below) of the Clavaillan section. Sporadic occur- rences of Nannoconus steinmannii and Conusphaera rothii were observed throughout. Nannoconus elongatus is restricted to the lower part of this interval.
 - Upper Subzone NC7A2: Clavaillan samples 2394 to 2410, south Pichouraz samples 2270 to 2300, Les Gays 1 samples 2306 to 2327
 The interval from the first occurrence of Braaru- dophaera africana to the last occurrence of Micrantholithus spp. This interval includes Nannoconus assemblage biozones GI and GII. The lowest occurrences of N. boletus and N. vocon- tiensis were observed at the base of this interval. The highest occurrences of Diazomatolithus leh- manii and "wide" Nannoconus (N. circularis, N. vocontiensis, N. bucheri) were observed at the top of this interval. The ratio of large to small Assipetra is higher in the upper portion of this inter- val (Nannoconus assemblage Biozone GIIB).
Subzone NC7B: Les Gays 1 samples 2332 to 2343, Les Gays 2 samples 2346 to 2301. The interval between the last occurrence of *Micrantholithus* spp. and the first occurrence of *Predictosphaerella columnata* (not present at the top of the composite section). This interval contains *Nannoconus*, assemblage Biozone GIII. Short *Nannoconus* with wide axial canals (*N. truitti* and *N. quadriangulus*) are very abundant throughout this subzone, but rare below. A significant change in the nannoconid populations at the base of this subzone between samples 2327 and 2332 in the Les Gays I section is further reinforced by highest common occurrences and tops of both *N. circuliris* and *N. vocontiensis*, in addition to the top of *N. bucheri*. The lowest occurrences of *Stoverius achlyosus* and *Orastrum perspicuum* were also observed at the base of this subzone.

Regional nannofossil studies: The first comprehensive Lower Cretaceous nannofossil biostratigraphic scheme by Thiérstein (1971) was founded on a composite of fourteen sections located in southeastern France. Thiérstein (1973) later published range charts of this research and the five outcrops encompassing the Aptian included the Bedoulian and Gargasian historical stratotypes. These data and interpretations provided the foundation for the Aptian zonal stratigraphy both regionally and globally for the bases of NC6 to NC8. More recent Aptian nannofossil biostratigraphic and paleoecologic studies in southeastern France are summarized in Figure 4, along with the integrated ammonite and foraminiferal biozonations.

Multidisciplinary stratigraphic research on the lower Aptian historical stratotype in the Cassis-La Bédoule area (South Provencal Basin) is summarized by Moullade *et al.* (1998). Bergen (1998) published the calcareous nannofossil biostratigraphy and abundance trends of some key genera in the same volume and bracketed the section from the upper portion of Subzone NC5C to the lower 6 m of Subzone NC7A (*M. hoschulzi*) ranges to the top of the section, Bed 175B). The lowest occurrence of *Eprolithus floralis* (Bed 169A) marked the base of Subzone NC7A, followed upwards by the bases of *Braarudosphaera africana* (Bed 172B), *Eprolithus planus* (Bed 173), and *Chiastozygus platyrhethum* (Bed 174B).

Two biostratigraphic-paleoecologic studies (Herrle and Mutterlose, 2003; Giraud *et al.*, 2018) in the nearby Vocontian Basin overlap stratigraphically in lower Subzone NC7A (Fig. 4). The multidisciplinary study on the Notre-Dame-de-Rosans section by Giraud *et al.* (2018) assessed early Aptian paleoecologic trends across the OAE1a event within their detailed chronologic framework. The majority of the 45.5 m measured section was placed in Subzone NC6B based on the presence of *Rhogadiscus angustus* at its base and the absence of *Conusphaera rothii* throughout. The base of Subzone NC7A was placed 4 m above the black shales of the "Niveau Goguel" (~9.5 m below the top of the section) on the lowest occurrence of *Eprolithus floralis* and roughly equivalent to the lowest occurrence of the foraminifer *Leupoldina cabri*. They also reported the following sequence of lowest occurrences within Subzone NC7A relative to the top of the "Niveau Goguel": *Eprolithus planus* (8 m), *Eprolithus apertior* (12.5 m), and *Braarudosphaera africana* (13 m). *Micrantholithus hoschulzi*, the extinction of which marks the top of Subzone NC7A, ranges to the top of this section.

Herrle and Mutterlose (2003) investigated the nannofossil biostratigraphy and assemblages from a 340 m composite of seven sections spanning the upper lower Aptian (Zone NC6) to lowermost Albian (Subzone NC8B). They documented a sequence of 23 nannofossil appearance/extinction events, in addition to abundance trends of the genera *Nannoconus*, *Assipetra*, and *Repagulum*. These results were integrated to the lithostratigraphy (esp. black shales and other key beds), ammonite and foraminiferal biozonations, and interpreted eustatic cycles. The lowest occurrence of *Eprolithus floralis* (base Subzone NC7A) was placed 1 m above the "Niveau Goguel" black shales near the base of the composite section. The highest occurrence of *Micrantholithus obtusus* was used to mark the top Subzone NC7A, as opposed to the original marker species (*M. hoschulzi*) proposed by Bralower *et al.* (1993). This event was placed 7.7 m below the Niveau Noire Calcaire 2 in the same section. Within the lower half of the approximately 40 m of Subzone NC7A in this Serre Chaitieu section, the following nannofossil radiation was documented from bottom to top: *Radiolithus planus*, *Eprolithus apertior*, *Braarudosphaera africana*, *Br. hockwoldensis*, and *Eprolithus varoli/Corollithion acutum*. In addition, a 13 m interval from the Niveau Goguel (OAE1a) to the Niveau Blanc straddling the NC6/NC7A boundary was observed to be nearly devoid of *Nannoconus*, but containing elevated percentages of large *Assipetra infracretacea* (> 6 μm) and *A. terebrodontarius* (> 10 μm). Herrle and Mutterlose (2003) equated this interval to the nannoconid crisis of Erba (1994) and formerly designated as nannoconid crisis I (NCI).

Herrle and Mutterlose (2003) could not differentiate Subzone NC7C because the lowest occurrence of *Rhogadiscus achlyostaurion* was not observed in the Serre Chaitieu section. Their combined Subzone NC7B/C, approximately 170 m thick and spanning three sections, was delineated at its top by the lowest occurrence of *Prediscosphaera columnata*. Within this combined subzone, a sequence of five lowest occurrences are distributed into three discrete intervals from bottom to top: (1) *Lapideacassis mariae* followed above by *Prediscosphaera* sp. near the base; (2) *Orastrum perspicuum* followed immediately above by *Lapideacassis gians* in the middle; and (3) *Prediscosphaera spinosa* near the top of Subzone NC7B/C.
Figure 3: Nannoplankton stratigraphic distributions.

Figure 4: Comparisons to relevant nannofossil research.
Mutterlose (1989, 1991) described a late Aptian acme in *Nannoconus truittii*, noting its occurrence in both Boreal and Tethys sections. Herrle and Mutterlose (2003) documented a nannofossil acme in the lower upper Aptian of their composite in southeastern France, ranging from the middle Globigerinelloides algerianus to the base of the *Ticinella bejaouaensis* foraminiferal zones. Herrle and Mutterlose (2003) defined the rapid decrease in *Nannoconus* spp. at the top of this acme as nannofossil crisis II (NCII).

Tremolada and Erba (2002) studied the Aptian biostratigraphy, paleoecology, and morphometrics of *Assipetra infracretacea* and *Assipetra terebrodentarius* from individual cores in northern Italy (Cismon) and the mid Pacific (DSDP Site 453), providing insight and calibration for the current work (Fig. 4). They found that the highest percentages of large specimens (> 7.5 μm) relative to normal-sized specimens for both species occurred within the upper lower Aptian "Selli" event (OAE1a). This acme of large *Assipetra* occurred in the upper portion of Zone NC6 is also associated with the first nannofossil crisis (NCI). Tremolada and Erba (2002) summarized the abundance and stratigraphy of *Assipetra* from the uppermost Barremian (NC5) to lower Albian (lower NC8) relative to the magnetostratigraphy and foraminiferal zones. Their definitions of zones NC6 to NC8 (Fig. 4) are congruent with the aforementioned research in southeastern France (Bergen, 1998; Moulaud et al., 1998; Herrle & Mutterlose, 2003; Giraud et al., 2018), as well as the calibration of the late Aptian *Nannoconus truittii* acme (NCII) with Herrle and Mutterlose (2003).

5. Discussion

The composite of four sections in the South Provencal Basin spans the upper portion of Subzone NC7A to the lower portion of Subzone NC7B (see § "Nannofossil biozonation" above). The lowest occurrence of *Braarudosphaera africana* can be used as an event to further subdivide Subzone NC7A in southeastern France, whereas Subzone NC7C (base on the first occurrence of *Rhogodiscus achlyostaurion*) was not delineated in these same regional studies (Fig. 4).

Lapideacassis and *Eprolithus floralis* were observed throughout the entire composite of four sections studied (Fig. 3). The presence of both *L. mariae* and *L. glans* at the base of the composite in Subzone NC7A are both lower (in NC7B/C) than reported by Herrle and Mutterlose (2003) in the nearby Vocontian Basin. Conversely, the lowest occurrence of *Stoverius achlyosus* was determined to be higher in this study (base Subzone NC7B) relative to original zonal framework (NC6A, Bralower et al., 1993) and the historical Bedoulian stratotype (NC6B, Bergen, 1998).

Two stratigraphic anomalies in the lower half of the Clavallian section are: (1) the occurrences of *Conusphaera rothii* and *Nannoconus steinmannii* with *Eprolithus floralis*; and (2) increased percentages of large *Assipetra*. Bralower et al. (1993) defined the top of Subzone NC6A on the highest occurrence of *Conusphaera rothii* and placed the top of *Nannoconus steinmannii* immediately above in the basal portion of Subzone NC6B; they defined the base of Subzone NC7A on the lowest occurrence of *Eprolithus floralis*. Bergen (1998) confirmed this subzonal stratigraphy in the historical Bedoulian stratotype, but placed the top of *Nannoconus steinmannii* much higher-immediately below the base of Subzone NC7A. Both *N. steinmannii* and *Conusphaera rothii* are extremely rare in Clavallian samples. When contrasted to the continuous presence of *Eprolithus floralis*, redeposition is a likely explanation for these extremely rare occurrences. Tremolada and Erba (2002) documented the highest percentage of large versus normal-sized *Assipetra* in the upper part of Zone NC6 below the lowest occurrence of *Eprolithus floralis*. They associated the "acmes" of these large forms with maximum TOC values during OAE1a in cores in northern Italy and the mid Pacific. Disparate taxonomy (i.e., size) and counting methodologies could explain the apparent age discrepancies in the "acmes" of these large morphotypes. However, the possibility of diachronocity - or a second, late early Aptian acme in large *Assipetra* - must be considered. Herrle and Mutterlose (2003) also observed an acme in large *Assipetra* in lowermost Subzone NC7A in the Vocontian Basin (Fig. 4).

The lowest occurrence of *Braarudosphaera africana* at 15.5 m above the base of the Clavallian section correlates to the base of *Dufrenoyia furcata* Zone and falls within the "Niveau Blanc inférieur" (NB1) marker (see Moulaud et al., 2017). Elsewhere in the South Provencal Basin at the Cassis-La Bédoule section, this event was placed 2.5 m above the base of the *Dufrenoyia furcata* Zone and 3 m above the base of NC7A (Moulaud et al., 1998; Bergen, 1998). Ten other nannofossil events associated with the *Braarudosphaera africana* horizon at Clavaillan (Fig. 3) indicate a disconformity and would explain this slight discrepancy in correlation to the ammonite zonal stratigraphy in the basin. In the Vocontian Basin, the lowest occurrence of *Br. africana* was placed 9 m above the base of NC7A in the Notre-Dame-de-Rosans section by Giraud et al. (2018) and approximately 17 m above the base of NC7A in the Serre Chaitieu section by Herrle and Mutterlose (2003).

The highest occurrence of the genus *Micrantholithus* in sample 2327 (48 m) in the Les Gays I section is used herein to mark the base of Sub-
zone NC7B; the lowest occurrence of the foraminifer *Globigerinelloides ferreolensis* is immediately above in sample 2332 (50 m; Mouldade et al., 2017). Seven other nannofossil bioevents (lowest and highest occurrences) have been associated with the boundary between subzones NC7A and NC7B in this study; abundance changes of five *Nannoconus* species were also observed at this stratigraphic level (Fig. 3). All these data indicate a significant change between samples 2327 and 2332 in the Les Gays I section. In the Vocontian Basin, Herrle and Mutterlose (2003) used the highest occurrence of *Micrantholithus obtusus* to mark the base of Subzone NC7B, as opposed to the highest occurrence of the genus. The strong abundance increase in short nannoconids with wide axial canals at the base of Subzone NC7B could be related to the base of the un-

6. Systematic paleontology

The Mesozoic classification of Bown and Young (1997) is mainly followed, with some modification to the ordinal classification proposed by Watkins and Raffi (2020). Perch-Nielsen (1985) and Young et al. (1997, 2022) were also used for classification.

Order EIFFELLITHALES Rood et al., 1971

Imbricate murooliths.

Family CHIASTOZYGACEAE

(Rood et al., 1973) Varol & Girgis, 1994

Genus Staurolithites Caratini, 1963

Staurolithites handleyi Lees, 2007

Pl. 3, fig. 13

Small coccolith (< 4 μm) with a delicate cross. Distribution: Sporadic in the Gargasian marls.

Staurolithites mutterlosei Crux, 1989

Pl. 3, fig. 14

This relatively large coccolith has a spiraled extinction pattern. The bright cross is slightly off-axis, but the arms are at right angles. It occurs sporadically throughout the Gargasian.

Staurolithites rectus Black, 1971a

Pl. 3, figs. 15-16

This relatively large coccolith (< 6 μm) has a wide central area spanned by a prominent axial cross. Optically, the relatively broad, parallel-sided arms are divided by longitudinal sutures. Distribution: Sporadic in all the samples.

Genus Bukrylithus Black, 1971a

Bukrylithus ambiguus Black, 1971a

Pl. 3, fig. 17

The well-developed axial cross broadens towards the center; its base arched on the proximal surface.

Distribution: Sporadic in the Gargasian marls.

Genus Rhabdophidites

(Manivit, 1971) Lambert, 1987

The murolith is minute relative to the elongate, bladed stem. For further discussion about this genus, see Covington and Wise (1987, p. 632).

Rhabdophidites moesiensis

Manivit, 1971

Pl. 3, figs. 20-21

Stem is greater than 10 times the coccolith length (< 1 μm). The stem tapers in both directions as in Lithraphidites, but that genus has no basal coccolith.

Distribution: Sporadic in the samples studied. Manivit (1971) has reported this nannofossil from the Albian.

Rhabdophidites parallelus

(Wind & Čepok, 1979) Lambert, 1987

Pl. 3, figs. 18-19, 22

The basal coccolith is 1-2 μm and the distal shield composed of around 20 elements (Lambert, 1987). Stem length is about 3-4 times the coccolith length.

Distribution: Sporadic in all the samples.

Genus Chiastozygus Gartner, 1968

The central area is occupied by a diagonal cross; the angle between the arms is variable.

Chiastozygus platyrhetum Hill, 1976

Pl. 4, figs. 4-5

Description: "Central area spanned by a central cross, the arms of which are oriented symmetrically about the principal axes of the ellipses. The crossbars and the rim are approximately equal in width" (Hill, 1976, p. 129). The crossbar is located slightly above the rim and each arm appears bisected longitudinally in cross-polarized light.

Distribution: Sporadic in the Gargasian marls. Bergé (1998) placed the lowest occurrence of this species in the upper Bedoulian within the lower portion of Zone NC7.

Chiastozygus aff. tenuis Black, 1971a

Pl. 4, figs. 1-3, ? 9

This taxon mostly closely resembles *Chiastozygus tenuis*, from which it differs by having a stem and a cross that slightly deviates from the main ellipse axes. The cross arms are orthogonal. Specimens observed appear conspecific to the specimen of "Zygolithus" littorarius (Görka) in...
Thierstein (1971, Pl. 1, figs. 3-4), but *Chiastozygus litterarius* (Görka, 1957) Manivit, 1971, is a Maastrichtian species with a bright, spiraled rim extinction pattern (see Reinhart & Görka, 1967; Bergen, 1998).

Distribution: Sporadic in all the samples.

Genus Tegumentum

Thierstein in Roth & Thierstein, 1972

Tegumentum stradneri

Thierstein in Roth & Thierstein, 1972

Pl. 4, figs. 6-7

The arms form an acute angle to the minor ellipse axis. Specimens were observed with crosses that were asymmetric (Pl. 4, fig. 6) to symmetric (Pl. 4, fig. 7) to the ellipse axes.

Distribution: Sporadic throughout the samples.

Genus Percivalia Bukry, 1969

Percivalia is characterized by an inner rim area composed of several narrow tiers of elements (Bukry, 1969). The lath-shaped elements of these tiered cycles are upright and exhibit a first order white birefringence. The central area may be occupied by a variety of central structures.

Percivalia fenestriatus (Worsley, 1971) Wise, 1983

Pl. 7, fig. 3

This species has an imperforate central area; in cross-polarized light, two nodes may be noticed in the minor axis of the central area.

Distribution: Sporadic in all the samples.

Percivalia hauxtonensis Black, 1973

Pl. 7, figs. 1-2

Percivalia hauxtonensis is a medium to large species with two longitudinal central perforations and a distal boss. Black (1973) illustrated five electron photomicrographs (proximal and distal views) and provided measurements of nine specimens (7.2-9.0 μm in length). The longitudinal central openings of the lower Cenomanian holotype are rimmed by a cycle of elements, akin to the two specimens illustrated herein. The light photomicrographs of an upper Albian specimen illustrated by Braulow and Bergen (1998) is smaller (5.7 μm) and lacks a distal boss. The upper Albian specimen illustrated by Burnett in Gale et al. (1996) and again in Burnett (1998) does not exhibit the rim birefringence pattern of Percivalia.

Distribution: This species was recorded within Percivalia fenestriatus during sample analyses.

Genus Zeugrhabdotus Reinhart, 1965

Murolith with a bridge along the short axis (distal view). Without any electron photographs it has been impossible to take into consideration the proximal ultrastructure (grid or other element) to differentiate the genera *Zygodiscus* and Zeugrhabdotus (sensu Lambert, 1987).

Zeugrhabdotus birescenticus (Stover, 1966)

Burnett in Gale et al., 1996

Pl. 4, fig. 19

Massive bridge composed of two distinct calcitic series. Some specimens belonging to this species have been previously put in the species *Z. diplogrammatus* (for instance, see Manivit, 1971, Pl. 13, figs. 5-6). But this author places into the same species name (*Z. diplogrammatus*) some coccoliths clearly different (e.g., Tranolithus manifestus Stover, 1966, see Manivit, 1971, Pl. 13, figs. 2, 4, 12-13). See discussion about Zeugrhabdotus diplogrammatus here below.

Distribution: Sporadic in all the samples.

Zeugrhabdotus choffatii

Roop et al., 1973

Pl. 4, fig. 15

A very small to small coccolith characterized by a simple bridge with a central opening corresponding to a hollow stem base. The Bathonian holotype is very small (2.4 μm). Mutterlose and Wise (1990) provided an excellent electron photomicrograph of a Valanginian specimen recovered from the east Antarctic margin (3.5 μm); the Aptian specimen illustrated herein is 3.2 μ in length.

Distribution: Sporadic in the Gargasian marls.

Zeugrhabdotus cf. diplogrammatus

(Deflandre in Deflandre & Fert, 1954)

Burnett in Gale et al., 1996

Pl. 4, figs. 10-11, 18

Much confusion exists about the species *Zygodiscus diplogrammatus* described by Deflandre in 1954 based on poorly illustrated North Africa Miocene species. The initial description indicated "elliptique à marge étroite, à bord lisse; aire centrale occupée selon son petit axe par deux barres parallèles". We put in cf. *diplogrammatus sensu Hill, 1976*, coccoliths close to those illustrated by Hill.

Distribution: Sporadic in the Gargasian shales.

Zeugrhabdotus howei

Bown in Kennedy et al., 2000

Pl. 4, fig. 17

Distribution: The species is sporadic in the Aptian samples examined.

Zeugrhabdotus moulladei Bergen, 1998

Pl. 4, fig. 14

Small murolith with a transverse bar composed by two opposing bright plates separated by a dark central stem.

Distribution: Sporadic in the Gargasian marls.
Zeugrhabdotus noeliae Rood et al., 1971
Pl. 4, figs. 16, 23-25

The Oxfordian holotype of Zeugrhabdotus noeliae is an electron photomicrograph (distal view) of a very small specimen (2.9 μm). Light microscope identification of this species by various Mesozoic researchers has been highly variable (see Young et al., 2022). Very small muroliths (2-3 μm) with a transverse central bar have been assigned to this species herein. This group constitutes one of the main components of the recovered nannoflora (up to 25-35% of the assemblage).

Zeugrhabdotus xenotus
(STOVER, 1966)
BURNETT in GALE et al., 1996
Pl. 3, fig. 26

The specimen illustrated is oriented parallel to the polarizing direction.

Distribution: Sporadic in the Gargasian marls.

Zeugrhabdotus sp. 1
Pl. 4, fgs. 21-22

Murolith with a narrow, bicyclic rim and a large central area. The outer rim cycle is broader and less birefringent than the bright inner rim cycle. The inner rim cycle broadens around the contacts with a narrow central transverse bar. The bar appears constructed of two elements and supports a solid distal stem which has an oblong base in plan view. Zeugrhabdotus clarus BOWN, 2005, is an Albian-Cenomanian species described from the northwest Pacific Ocean. This species has a broader rim and corresponding smaller central area; its more prominent bright inner rim cycle has strongly spiraled extinction. The bar elements of Z. trivectis BERGEN, 1994, are optically grouped into a bundle of three elements slightly offset from each other, as opposed to the two-element bundle of Zeugrhabdotus sp. 1.

Distribution: Sporadic in all the samples.

Genus Parhabdolithus DEFLANDRE, 1952

Murolith with a massive wall, which differentiates it from Zeugrhabdotus, and a bridge supporting a generally well developed central process, which differentiates it from Rhagodiscus.

Parhabdolithus embergeri
(NOËL, 1958) STRADNER, 1963
Pl. 4, fgs. 12-13

A size variation was observed between smaller (Pl. 4, fig. 13) and larger specimens (Pl. 4, fig. 12).

Distribution: Sporadic to frequent in all the samples.

Parhabdolithus imperfossus
(Black, 1972) LAMBERT, 1987
Pl. 5, fgs. 13-15

Very tiny nannofossils (2-4 μm) with very long and thin stem are observed in our samples (Pl. 5, fig. 14, distal view, and Pl. 5, fig. 15, profile view). LAMBERT (1987) discussed the possible link between Parhabdolithus imperfossus initially described in SEM and Rhagodiscus achlyostaurion described in photonic microscopy. From a structural point of view with the absence of hole in the proximal rim, the species could be considered as a Rhagodiscus (see BERGEN, 1998, p. 246). However, LAMBERT (1987) described several morphotypes based on the size of the coccolith and the form of the coccosphere.

Distribution: Sporadic in all the Gargasian samples.

Parhabdolithus infinitus
(WORSLEY, 1971)
THIERSTEIN in ROTH & THIERSTEIN, 1972
Pl. 9, fgs. 2-3, 7-8

This species exhibits a low birefringence (first order grey) and has two elliptical central openings aligned with the major ellipse axis. This nannofossil is frequently overgrown and can be difficult to discern from Calcicalathina erbae when the two openings are obliterated (see also BERGEN, 1998). The size criterion could be used to discriminate both species: Parhabdolithus infinitus (Pl. 9, figs. 2-3, 7-8) is smaller than Calcicalathina erbae (Pl. 9, figs. 4-5, 10).

Distribution: Frequent in the Bedoulian, sporadic in the Gargasian.

Genus Rhagodiscus REINHARDT, 1967

This diverse genus is reserved for loxoliths with low distal rim and a central area filled by a granular plate. The central plate may be perforate and a distel stem may or may not be present. Specimens referred to this genus typically represent between 5-10% of assemblages recovered during this study.

Rhagodiscus angustus
(STRADNER, 1963) REINHARDT, 1971
Pl. 5, fgs. 6, 9; Pl. 9, fgs. 24-25

This species has a subrectangular outline and a wide hollow stem. The central area is reduced to where the stem periphery may touch the inner distal rim margin.

Rhagodiscus asper
(Stradner, 1963) Reinhardt, 1967
Pl. 5, figs. 1-2, 4-5, 8
Coccolith size is variable from small (3-5 μm) to large specimens up to 10 μm. The distal rim is broad; a hollow, circular stem is present.
Distribution: Frequent in all studied samples.

Rhagodiscus gallagheri
Rutledge & Bown, 1996
Pl. 5, figs. 10-11
This small species (3.5-5 μm) has a narrowly elliptical outline.
Distribution: Present in all samples.

Rhagodiscus splendens
(Deflandre, 1953) Verbeek, 1977
Pl. 5, figs. 3, 7
This species has a long hollow, tapered distal stem. The birefringent stem base has a serrate periphery.
Distribution: Sporadic in the samples examined.

Genus Tranolithus
(Stover, 1966) Lambert, 1987
Tranolithus gabalus Stover, 1966
Pl. 4, fig. 20
Small to medium-sized coccolith characterized by the presence of two central "block" oriented along the minor ellipse axis.
Distribution: Sporadic in the rich Gargasian marls.

Genus Eiffellithus
Reinhardt, 1965
Eiffellithus hancockii Burnett, 1997
Pl. 9, fig. 15
This small nanofossil has a broad, bicyclic rim; the bright inner rim cycle nearly closes the central area. It has a simple axial cross atypical for the genus *Eiffellithus*.
Distribution: This species occurs sporadically throughout all the samples, including the Uppermost Bedoulian. *Bergen* (1998) placed its lowest occurrence in the middle Bedoulian (lower NC6B Subzone).

Genus Calcicalathina
Thierstein, 1971
Calcicalathina erbae Bergen, 1998
Pl. 9, figs. 4-5, 9-10
The diagnosis by Bergen (1998) is "a species of *Calcicalathina* with a low central area showing sharp distinction between rim (1st order yellow birefringence) and coarsely-granular central area".

Genus Rotelapillus
Noël, 1972
Rotelapillus crenulatus
(Stover, 1966) Perch-Nielsen, 1984
Pl. 8, fig. 2
This distinct species has a circular to subcircular outline, eightradial central bars, and lateral nodes extending from the rim periphery.
Distribution: This species occurs sporadically in samples examined.

Genus Stoverius
Perch-Nielsen, 1986
The diagnosis of the genus is "round to broadly elliptical coccoliths with a wall of more or less vertical elements, a cycle of proximal elements and a central cross." The cross and inner rim cycle exhibit a first order white birefringence, whereas the outer rim cycle exhibits a very faint birefringence. *Perch-Nielsen* (1986) differentiated *Corollithion* Stradner, 1961, by its hexagonal outline and *Rotelapillus* Noël, 1972, by its eight central bars. There is a clear phylogenetic relationship between the genera Stoverius (with *St. achylosus*) and Corollithion (with *C. protosignum* and *C. signum*), see Lambert, 1993.

Stoverius achylosus
(Stover, 1966) Perch-Nielsen, 1986
Pl. 7, figs. 16-19
The species was described for circular to broadly elliptical coccoliths; the holotype has an orthogonal cross aligned with the ellipse axes.
Distribution: The lowest occurrence of this species was observed in sample 2327 (Les Gays 1 section) at the base of the nanofossil Subzone NC7B. *Bergen* (1998) placed the lowest occurrence within the middle Bedoulian in Subzone NC6B, immediately below the lowest occurrence of *Rhagodiscus angustus*. *Brälower et al.* (1993) placed its base further down in the lower Aptian, immediately below the top of Subzone NC6A.

Genus Corollithion
Stradner, 1961
Corollithion ? madagaskarensis
Perch-Nielsen, 1973
Pl. 4, fig. 8
Distribution: Rare in the Gargasian marls.

Genus Stradnerlithus
Black, 1971a
Stradnerlithus ellipticus
(Bukry, 1969) Perch-Nielsen, 1984
Pl. 7, fig. 15; Pl. 8, fig. 9
Distribution: This species occurs sporadically in the Gargasian marls.
Order PODORHABDALES
(Rood et al., 1971) Bown, 1987
Family CRETARHABDACEAE
Thierstein, 1973
Genus Cretarhabdus
Bramlette & Martini, 1964
The central area is occupied by an axial cross and net.

Cretarhabdus conicus
Bramlette & Martini, 1964
Pl. 5, figs. 12, 18-20
There is variability in coccolith size and central area construction. Large specimens with distinct axial crosses and vaulted central areas (Pl. 5, fig. 12) are more typical of the Maastrichtian holotype.

Distribution: This species occurs sporadically in the samples examined.

Genus Microstaurus Black, 1971a
The thick proximal shield is noticeably smaller than the distal shield; the central opening contains an axial cross-structure.

Microstaurus chiastius
(Worsley, 1971) Bralower et al., 1989
Pl. 5, fig. 16
Bralower et al. (1989) emended the species to include specimens with small central areas less than one-half the coccolith length.

Distribution: The species occurs sporadically in the Gargasian.

Microstaurus quadratus Black, 1971a
Pl. 5, fig. 21
Specimens with central areas greater than one-half the coccolith length are referred to this species, following Bralower et al. (1989).

Distribution: M. quadratus occurs sporadically in the samples examined.

Genus Retecapsa Black, 1971a
The genus is distinguished by having an axial cross with lateral bars.

Retecapsa schizobrachiata
(Gartner, 1968)
Grün in Grün & Allemann, 1975
Pl. 5, fig. 17
The bar is the major axis trifurcates at the rim margin and the one in the minor axis bifurcates. Coccolith size is variable.

Distribution: The species is sporadic in Gargasian samples.

Genus Grantarhabdus Black, 1971a
The genus is distinguished by its diagonal central cross.

Grantarhabdus meddii Black, 1971a
Pl. 5, fig. 22
The diagonal cross is symmetric to the ellipse axes and the bars form an acute angle to the minor ellipse axis. The holotype of Grantarhabdus unicornis (Stover, 1966) Black, 1972, has a diagonal cross asymmetric to the ellipse axes.

Distribution: This species occurs sporadically in the samples examined.

Order PODORHABDALES
(Rood et al., 1971) Bown, 1987
Family AXOPODORHABDACEAE
Bown & Young, 1997
Genus Axopodorhabdus
Wind & Wise in Wise & Wind, 1977
Axopodorhabdus dietzmanni
(Reinhardt, 1965) Wind & Wise, 1983
Pl. 6, figs. 4, 7, 8
This medium to large species of Axopodorhabdus is distinguished by its narrowly elliptical outline and broad transverse bars.

Distribution: It occurs sporadically in the Gargasian.

Genus Tetrapodorhabdus Black, 1971a
Tetrapodorhabdus coptensis
Black, 1971a
Pl. 6, figs. 2-3, 5, 6
Small to medium-sized species with bars that form an acute angle with the minor ellipse axis.

Distribution: It occurs sporadically in the samples examined.

Tetrapodorhabdus decorus
(Deflandre in Deflandre & Fert, 1954)
Wind & Wise in Wise & Wind, 1977
Pl. 6, figs. 1, 7
The holotype is a light photomicrograph in profile. In plan view, it has been associated with a symmetric diagonal cross where the orthogonal bars flare near the rim margin and form circular openings.

Distribution: Sporadic in the samples.

Genus Acaenolithus Black, 1973
This genus (first described by Black for Albian specimens) is related to the Family Arkhangelskiiellacea well represented in Upper Cretaceous series.

Acaenolithus ? sp.
Pl. 3, fig. 23
We ascribed to this genus very small coccoliths with alternate extinction of the cross arms. In the absence of observations in SEM, it seems very difficult to precisely determine the ultra structure.

Distribution: Sporadic in the richest Gargasian samples.
aff. Misceomarginatus
WIND & WISE in WISE & WIND, 1977
Pl. 3, figs. 24-25

The general aspect including rims and central cross is close to Misceomarginatus (and also to the close genus Diloma WIND & CEPEK, 1979). The quadrants seem free or spanned by a diagonal bar.

Distribution: Sporadic in the samples.

Family COCCOLITHACEAE NOËL, 1965
Circular or elliptical coccoliths composed by two superimposed rim composed by radial calcitic elements with a strong angle between them in the external part (junction of the two rims). This particularity allows a very good cohesion between the coccoliths on the coccosphere. The two rims are linked in their internal sides by a calcitic tube. The central area is occupied (or not) by variable filling taking place indirectly on the proximal or distal rims.

Genus Flabellates TIERSTEIN, 1973
Original diagnosis: "Presence of an inner cycle of the distal shield composed of elongated calcitic elements, one or two clusters of these elements often extend beyond the elliptical periphery of the coccolith" (TIERSTEIN, 1973, p. 41).

Flabellates biforaminis TIERSTEIN, 1973
Pl. 6, figs. 9-11
Morphologic variation observed includes coccolith size and outline, as well as the size and shape of the central openings.
Distribution: This species is present in all our samples.

Family BISCUtACEAE BLACK, 1971a
Genus Biscutum
BLACK in BLACK & BARNES, 1959
Biscutum is retained for non-imbricating, elliptical placoliths constructed of two broad shields and an inner distal tube cycle. In cross-polarized light, the shields are faint and the narrow tube cycle is bright. Palaeopontosphaera NOËL, 1965, is considered a junior synonym here; the two species included within Biscutum are taxonomically problematic due to uncertainties regarding their holotypes. Discussion of these genera and their included species is a topic beyond the current study (see LAMBERT, 1993, p. 206).

Biscutum constans
(GÖRKA, 1957) BLACK, 1968
Pl. 6, fig. 17
GÖRKA (1957) described this species from the upper Maastrichtian and indicated a length of 5-9 μm. It is founded on a rudimentary drawing of a normally elliptical specimen (1.38 aspect ratio) shown to have a single cycle of fifteen radial elements (19-20 described) and an open center (described as smooth) approximately 0.44 of the coccolith width. Current usage has evolved into a small to medium (3-8 μm), normally elliptical species with a narrow central area, bright tube cycle and dark central plate (see YOUNG et al., 2022). That concept is followed herein.
Distribution: Biscutum constans and B. dubium have been counted as a single taxon and are frequent in samples (5-15% of assemblages).

Biscutum dubium
(NOËL, 1965) GRÜN in GRÜN et al., 1974
Pl. 6, fig. 22
Small elliptical coccoliths with acetal area nearly filled by a distal boss are identified as this species (see GRÜN & ZWEILI, 1980; KÆNEN & BERGEN, 1993). Biscutum ellipticum (GÖRKA, 1957) is not appropriate because the original description indicates a very large size (length 18 μm) and the accompanying sketch of an Upper Maastrichtian specimen shows ten rim elements with curved sutures and an open center. The presence of a central boss distinguishes B. dubium from B. constans.

Genus Discorhabdus NOËL, 1965
Discorhabdus ignotus
(GÖRKA, 1957) PERCH-NIELSEN, 1968
Pl. 6, fig. 16
Very small circular placoliths with faint birefringence and a closed center were identified as this constant background species (2.5-5% of assemblages).

Discorhabdus serratus WORSLEY, 1971
Pl. 9, figs. 1, 6
Shields composed by 8 to 12 elements with blunt terminations. The central area is occupied by a stem (distal view) and not by a central open area as mentioned by WORSLEY (1971).
Distribution: This form was found only in the lower part of the Clavaillan section (Desc Hayesites grandis Zone).

Genus Haqius ROTH, 1978
Large circular coccolith with a reduced central area.

Haqius circumradiatus
(STOVER, 1966) ROTH, 1978
Pl. 6, figs. 18, 23
This large circular coccolith is easily recognizable. The rim is composed of 30-35 elements and exhibits a faint first order white birefringence.
Distribution: This species occurs sporadically in samples.

Genus Watznaueria REINHARDT, 1964
Three species were assigned to this elliptical genus, which comprises 20-35% of the nanno-plankton population in samples examined.
Watznaueria barnesae
(Black, 1959) Perch-Nielsen, 1968
Distribution: This species is common to abundant in samples.

Watznaueria britannicus
(Stradner, 1963) Reinhardt, 1964
Specimens with disjunct bridges were assigned to this species, which is much less frequent than Watznaueria barnesae.
Distribution: Present in all samples.

Watznaueria ovata
Bukry, 1969
Specimens observed with large central openings were typically smaller than the medium-sized specimens originally illustrated by Bukry (1969).
Distribution: The species occurs sporadically in Gargasian sediments, where it is very rare.

Genus Pickelhaube
Applegate al. in Covington & Wise, 1987
Pickelhaube furtiva
(Roth, 1983) Applegate et al. in Covington & Wise, 1987
This large, delicate nannofossil was often observed broken in Gargasian sediments, where it is very rare.

Genus Crucibiscutum
Jakubowski, 1986
This genus is reserved for elliptical Biscutaceae with a central tube and axial central structure.

Crucibiscutum salebrosum
(Black, 1971a) Jakubowski, 1986
The broad species concept maintained herein includes variations in coccolith size, the ratio of the central area size to rim width, and the construction of the axial cross. Crucibiscutum salebrosum has priority over other Cretaceous species that may be distinguished on these characteristics.
Distribution: Present throughout the Gargasian.

Genus Manivitella
Thierstein, 1971
Manivitella pemmatoidea
(Deflandre in Manivit, 1965)
Thierstein, 1971
The similar large species Tubodiscus jurapela- gicus (Worsley, 1971) Roth, 1973, was not differentiated during sample analyses.
Distribution: This taxon occurs sporadically in the samples examined.

Genus Tubodiscus
Thierstein, 1973
Tubodiscus burnettiæ
Bown in Kennedy et al., 2000
Pl. 7, figs. 12-13
This medium-sized species of Tubodiscus has a relatively broad inner rim cycle.

Genus Diazomatolithus
Noël, 1965
Description: Circular to subcircular coccolith with a central area always empty.

Diazomatolithus lehmanii
Noël, 1965
Outside of size, variants with narrow (Pl. 6, figs. 12-13) and broad (Pl. 6, figs. 14-15) rims were observed. Those with narrow rims and large centers may represent Diazomatolithus galicianus KaeMel & BerGen, 1996, but were not differentiated during sample analyses.
Distribution: Although Diazomatolithus does not reach the NC7B subzone in our samples, this Late Jurassic genus is recorded above the Aptian.

Order BRAARUDOSPHAERALES
Lees and Bown (2016) included Braarudosphaeraceae Deflandre, 1947, and Nannococcales Deflandre, 1959, within their emended definition of this order. Young et al. (2022) tentatively placed the Polycyclolithaceae Forchheimer, 1972, within this order.

Family BRAARUDOSPHAERACEAE
Deflandre, 1947
Pentagonal coccoliths constructed of superimposed plates. Genera are distinguished by the intersection of the sutures and periphery. The present-day species Braarudosphaera bigelovii is composed of a single layer of pentagonal elements (12 per coccosphere), whereas fossil species can be more complex with individual coccoliths composed of numerous layers (see Lambert, 1986).

Genus Braarudosphaera
Deflandre, 1947
Braarudosphaera africana
Stradner, 1961
Distribution: This species was not observed in the lower part of the Clavaillan section (Bedoulian) and is sporadic in the Gargasian. Bergen (1998) placed the base of Br. africana in lowermost Subzone NC7A, immediately above the base of Epolithus florialis.

Braarudosphaera bigelovii
(Gran & Braarud, 1935)
Deflandre, 1947
Pl. 7, figs. 20-21
Distribution: The species occurs sporadically in the samples examined.
Genus Micrantholithus
DEFLANDRE in DEFLANDRE & FERT, 1954

The highest occurrences of both species of Micrantholithus coincide with the "Nannoconus crisis level" in the materials studied. Bralower et al. (1993) defined the top of Subzone NC7A on the highest occurrence of Micrantholithus hoschulzii, whereas Herrle and Mutterlose (2003) modified the definition of the genus.

Micrantholithus hoschulzii
(REINHARDT, 1966) THIERSTEIN, 1971
Each element has a triangular shape.

Micrantholithus obtusus STRADNER, 1963
Pl. 8, fig. 10; Pl. 9, fig. 14

The elements have a typical V-shaped outline due to their indented peripheries.

Family CALCIOSOLENIACEAE
KAMPTER, 1937
Genus Calciosolonia GRAN, 1912
Calciosolonia fossilis
(DEFLANDRE in DEFLANDRE & FERT, 1954)
BOWN in KENNEDY et al., 2000
Pl. 8, figs. 21-23

Relative to modern coccolithophores, individual coccolith morphology could vary from large rhombohedra in the middle part of the cell (Pl. 8, fig. 23) to elongated rhomboedra in the distal part of the cell (Pl. 8, figs. 21-22).

Distribution: Sporadic throughout the samples studied.

Family CALYPTROSPHAERACEAE
BOUDREAU & HAY, 1969
Genus Orastrum
WIND & WISE in WISE & WIND, 1977
Orastrum perspicuum
VAROL in AL-RIFAII et al., 1990
Pl. 7, figs. 23-24

Coccolith composed of a single plate surrounded by a narrow rim. The central plate is less birefringent than the rim.

Distribution: This lowest occurrence of this species is in Subzone NN7B in the material studied. Herrle and Mutterlose (2003) placed this event below the N. truitti acme in Subzone NN7B/C.

Genus Isocrystallithus VERBEEK, 1977
Isocrystallithus partitum
(VAROL in AL-RIFAII et al., 1990)
BERGEN, 1998
Pl. 8, figs. 17-18

This holococcolith has two central plates separated by a transverse bridge composed of four calcite elements. The original description of this species suggested that these four elements could be the remnants of a short distal process. Bergen (1998) first associated these basal plates with complete specimens having short, tapered distal processes and transferred the species into Isocrystallithus. The genus Orastrum does not have a distal process or central bridge.

Distribution: This species is sporadic in the Gargasian marls.

Genus Calculites
PRINS & SISSINGH in SISSINGH, 1977
Calculites dispar
VAROL in AL-RIFAII et al., 1990
Pl. 8, figs. 15-16; Pl. 9, fig. 18

These small elliptical holococcolith are composed of four unequal plates surrounded by a narrow rim. A longitudinal suture separates the two smaller central plates symmetric across the minor ellipse axis. Obtuse angled sutures extend from the poles of the longitudinal suture to delineate two larger plates symmetric across the major ellipse axis.

Distribution: This species is sporadic in the upper Bedoulian and Gargasian marls.

Genus Zebrashapka
COVINGTON & WISE, 1987

The original description and electron micrographs of this monospecific genus by Covington and Wise (1987) indicate that this is a holococcolith.

Zebrashapka vanhintei
COVINGTON & WISE, 1987
Pl. 8, figs. 3-5

This holococcolith is easily recognizable.

Distribution: Sporadic in rich Gargasian samples.

Family POLYCYCLOLITHACEAE
(FORCHHEIMER, 1972) VAROL, 1992
PERCH-NIELSEN (1985) assigned Assipetra Roth, 1973, and Hayesites MANIVIT, 1971, to this family, but they do not conform to the emended definition of Polycyclolithaceae by Varol (1992) due to their lack of a two-tiered construction. Bown and Young (1997) referred to Assipetra and Hayesites as "uncertain polycycloliths." They are tentatively placed in this family herein because of their radial symmetry and petaloid elements.

Genus Eprolithus STOVER, 1966

Eprolithus has a wall constructed of two tiers of vertical to sub-vertical, petaloid elements (5-9) connected by a medial diaphragm.

Eprolithus floralis
(STRADNER, 1962) STOVER, 1966
Pl. 8, figs. 6-8; Pl. 9, figs. 21-23

Radiolithus planus STOVER, 1966 (Pl. 9, figs. 21-22) was included within Eprolithus floralis during sample analyses.

Distribution: The lowest occurrence of Eprolithus floralis marks the base of Subzone NC7A, which occurs below the lowest sample examined for this study (see Bergen, 1998; Herrle & Mutterlose, 2003; Giraud et al., 2018).
Family LAPIDEACASSACEAE
BOWN & YOUNG, 1997
Genus Lapideacassis BLACK, 1971b
Lapideacassis glans BLACK, 1971b
Pl. 8, figs. 11-12; Pl. 9, figs. 12-13, 17
This species was distinguished by its low, broad profile and irregular outline.

Lapideacassis mariae BLACK, 1971b
Pl. 8, fig. 13
This species was distinguished by its high, relatively narrow profile and irregular outline. No intermediate forms have been observed between this species and L. glans.

Distribution: Lapideacassis mariae and Lapideacassis glans are sporadic in the studied samples, including the lower Aptian (Bedoulian). BERGEN (1998) did not report the genus from the lower Aptian historical stratotype. HERRLE and MUTTERLOSE (2003) placed the lowest occurrences of both species in the Gargasian (Subzone NC7B/C).

Lapideacassis sp.
Pl. 9, figs. 11, 16
Rare specimens with relatively high, narrow profiles and smooth outlines were observed, but more information is needed to interpret their relationship to the other two species of Lapideacassis.

Distribution: This nannofossil was observed only in the lower part of the Clavingian section (Bedoulian).

Family MICRORHABDULACEAE
DEFLANDRE, 1963
Genus Lithraphidites DEFLANDRE, 1963
Lithraphidites carniolensis
DEFLANDRE, 1963
Pl. 8, fig. 14
Distribution: This species is sporadic in all the samples examined.

Genus Hayesites MANIVIT, 1971
Hayesites irregularis
(THIERSTEIN in ROTH & THIERSTEIN, 1972)
APPLEGATE et al. in COVINGTON & WISE, 1987
Pl. 8, figs. 19-20
Distribution: This Aptian-Albian species occurs sporadically in the samples examined.

Genus Assipetra ROTH, 1973
Assipetra infracretacea
(THIERSTEIN, 1973)
ROTH, 1973
Pl. 3, fig. 6; Pl. 10, fig. 22
THIERSTEIN (1973) described this species as "having two sets of flat crystal plates, one set piercing the other at an obtuse angle" and remarked that light microscope specimens having subrectangular to suboval shapes with 4-6 radial sutures. All four specimens illustrated by THEIRSTEIN (1973) - transferred between the SEM and LM - appear subrectangular and suboval outlines (op. cit., Pl. 1, figs. 6, 19) could be a consequence of specimen orientation. Aspect ratios of these four original specimens vary between 1.1-1.3 and a maximum diameter of 5-10 μm was given for the species. The diagnosis of A. infracretacea larsonii by TREMOLADA and ERBA (2002) restricted this subspecies to specimens greater than 7.5 μm, but BOWN (2005) considered a number of these specimens to be side views of Assipetra terebrodentarius. A size of 10 μm is used herein to separate two morphotypes of A. infracretacea.

Assipetra terebrodentarius
(APPLEGATE et al. in COVINGTON & WISE, 1987)
RUTLEDGE & BERGEN in BERGEN, 1994
Pl. 3, fig. 12; Pl. 10, figs. 21, 23-24
APPLEGATE et al. (in COVINGTON & WISE, 1987) stated that Assipetra terebrodentarius "is more globular, has more numerous and angular projecting elements, and often displays a regular, spiral construction not observed in A. infracretacea". The diagnosis of A. terebrodentarius youngii by TREMOLADA and ERBA (2002) restricted this subspecies to specimens greater than 7.5 μm. BOWN (2005) emended this subspecies for specimens greater than 8.0 μm because the species holotype is 7.7 μm. A size of 10 μm is used herein to separate two morphotypes of A. terebrodentarius (see §3. Materials and methods).

Distribution (including A. infracretacea, Fig. 3): The semi-quantitative analysis of the distribution of these two species that we carried out (see §3. Materials and methods) shows that the record of these nannofossils is not continuous with two intervals where they are relatively frequent:
1. lower Aptian, Deshayesites grandis Zone and
2. a part of the upper Gargasian, middle part of the Oufreynovia furcata Zone.

For these two intervals the A.i + A.t large forms / A.i + A.t small forms observed confirm the 2002 TREMOLADA and ERBA work. The large specimens are clearly more frequent in the lower Aptian (Deshayesites grandis Zone) of the the studied section (i.e., the lower portion the Clavingian section) compared to the upper Aptian (Oufreynovia furcata Zone).

Genus Tetralithus GARDET, 1955
The genus Tetralithus has been created in 1955 for Miocene nannofossils probably reworked from Cretaceous sediments. For a discussion of differences between Tetralithus and Quadrum the readers are referred to PRINS and PERCH-NIELSEN (in MANIVIT et al., 1977).

Tetralithus? maliticus WORSLEY, 1971
Pl. 9, fig. 20
This small, square nannolith is composed of four elements separated by orthogonal sutures that intersect the midpoints of the peripheries. Individual elements are wedge-shaped, being
thicker along the axes offset 45 degrees to the sutures. This form resembles Quadrum, but four species of that genus are restricted to the Upper Cretaceous.

Distribution: This taxon was observed only in the basal portion of the Clavaillan section (Bedoulian).

Genus Conusphaera Tréjo, 1969
Conusphaera rothii
(Thierstein, 1971) Jakubowski, 1986
Pi. 9, fig. 19

Distribution: This species was observed sporadically in the Clavaillan section (Bedoulian) along with Eprolithus floralis. It is possible that these rare, sporadic specimens are redeposited. Bra-lower et al. (1993) defined the base of Subzone NC6B on the highest occurrence of Conusphaera rothii and the top of this subzone on the latest occurrence of Eprolithus floralis. The stratigraphic ranges of these two marker species are separated by about 63 m (22 samples) in the historical Bedoulian stratotype (Bergen, 1998).

Family NANNOCONACEAE
Deflandre, 1959

Genus Nannoconus Kampsner, 1931
Nannoconus specimens are illustrated in the photographic plates and as drawn profiles of actual specimens (Fig. 2). These profiles were drawn from photographs of the first specimen encountered in each of 29 samples (red dots in Fig. 2). This process has been used to illustrate the significant morphological variations. These variations make it often difficult to distinguish the two species (see for instance on Fig. 2 the group B with N. globulus / N. circularis).

The taxonomic concepts of Deres and Achéritéguy (1980) are followed. Please refer to this publication for more taxonomic information. Fifteen species - including three subspecies - have been organized into five groups based on strong morphological affinities. All have central cavities. They are presented herein relative to these groupings:

- Group A: constricted outline with N. boletus, N. carniolensis
- Group B: rounded outline with N. circularis, N. aff. globulus
- Group C: cylindrical outline with N. elongatus, N. inconspicous, N. quadriangulus, N. truitii
- Group D: short, conical outline with N. bucheri, N. vocontiense
- Group E: elongate, conical outline with N. aff. borealis, N. bonetii, N. aff. grandis, N. kamptneri, N. wassallii

Nannoconus steinmannii has a conical outline and is the only species with a central canal.

Group A: constricted outline

Nannoconus boletus
Deflandre & Deflandre-Rigaud, 1962
Pl. 1, figs. 12, ? 13; Pl. 2, figs. 6, 31, ? 32;
Pl. 3, figs. ? 1, 2, ? 3, 4-5

Nannoconus carniolensis
Deflandre & Deflandre-Rigaud, 1962
Pl. 3, figs. ? 7, 8-11

Both species included in this group were first illustrated in 1962 and formally described five years later. The group includes nannoconids with a distinct external restriction at the middle to upper portion of the test, resulting in a more or less mushroom-shaped outline in longitudinal view ("boletus edulis" is a well-known and appreciated mushroom). The distinction between the two species is often subtle. N. carniolensis is shaped more like a pot, whereas N. boletus is more fungal form. Both species are small to medium-sized (< 10 μm), in congruence with specimens first illustrated by Deflandre in 1962. The oldest specimens recovered from the upper part of the Clavaillan section are more rectangular in longitudinal outline with a low relief constriction and roughly equivalent wall to and central cavity thicknesses.

Distribution: N. boletus occurs sporadically throughout the Gargasian, but is more frequent around the NC7A/NC7B boundary. The smallest forms of N. carniolensis, which are uncommon overall, seem restricted to Nannoconus assemblage zone GIIB.

Group B: rounded outline

Nannoconus circularis
Deres & Achéritéguy, 1980
Pl. 1, figs. 10-11, 31; Pl. 2, figs. 25-26, 28;
Pl. 10, fig. 15

Nannoconus aff. globulus
Brönnimann, 1955
Pl. 1, figs. 8-9, 30; Pl. 2, figs. 23-24, ? 27

This group includes more or less circular to rectangular forms with a large internal cavity and a thin wall (wall thickness << internal cavity). From a semi-quantitative point of view it seems to be very difficult to distinguish the two species which appear in the Aptian sediments and probably represent two poles of the same population. Depending to the preservation (calcite overgrow) it is possible to transform a thin walled with large central cavity N. circularis in a more robust and thick walled with a more narrow central cavity. N. circularis has frequently a quadrangular shape compared to N. aff. globulus with is globular shape.

Distribution: This group is abundant throughout Subzone NC7A, but absent from Subzone NC7B.
The largest forms (10-15 µm, N. vocontiensis) have a thick wall and open central cavity approximately equal in width.

Nannoconus inconspicuus
DEFLANDRE & DEFLANDRE-RIGAUD, 1962
Pl. 10, fig. 7

Nannoconus quadriangulus
DEFLANDRE & DEFLANDRE-RIGAUD, 1962
Pl. 1, figs. 14-15, 17-18, 32;
Pl. 2, figs. 1-2, 7-16, 29, 31

Nannoconus truittii BRÖNNIMANN, 1955
Pl. 1, figs. 16, 33; Pl. 2, figs. 3-5

Two subspecies of Nannoconus quadriangulus (i.e., N. quadriangulus quadriangulus and N. quadriangulus apertus) were first illustrated in 1962, but formally described in 1967 by DEFLANDRE and DEFLANDRE-RIGAUD. Both subspecies are not considered herein. They correspond to small to medium-sized (up to 9 µm) quadrangular forms with a relatively thick wall and a rectangular central cavity (ratio wall thickness / central cavity close to 1). These authors described also a very small species Nannoconus inconspicuus (length around 2 µm). This group includes all the rectangular to subrectangular forms (including the smallest ones) varying from 2/3 to 8/9 µm. N. truittii, another small quadrangular form with a thicker wall, which was first described by BRÖNNIMANN in 1955, is also ascribed to this group.

Group D: short, conical outline (horseshoe-shaped)
Nannoconus bucheri BRÖNNIMANN, 1955
Pl. 1, figs. 2, 5, 28-29; Pl. 10, figs. 12-14

Nannoconus vocontiensis
DERES & ACHÉRITÉGUY, 1980
Pl. 1, figs. 1-3, 6-7, 30; Pl. 2, figs. 17-22;
Pl. 10, fig. 25

Apparently these two species seem to represent a continuous lineage between thicker (wall) forms (N. bucheri) and thinner (wall) forms (N. vocontiensis) both species with a horseshoe type. The largest forms (10-15 µm, N. bucheri) are found mainly in the upper Bedoulian and lower Gargasian and the smaller ones (around 10 µm, N. vocontiensis) in the lower Gargasian.

Distribution: This group is common throughout and restricted to Subzone NC7A.

Group E: elongate, conical outline
Nannoconus bonetii TREJO, 1959
Pl. 10, figs. 11-20

Nannoconus aff. borealis
PERCH-NIELSEN, 1979
Pl. 10, fig. 10

Nannoconus aff. grandis
DERES & ACHÉRITÉGUY, 1980
Pl. 1, fig. 19; Pl. 10, figs. 18-19

Nannoconus kamptneri
BRÖNNIMANN, 1955
Pl. 1, fig. 20; Pl. 10, fig. 17

Nannoconus wassallii BRÖNNIMANN, 1955
Pl. 1, figs. 21-27; Pl. 10, fig. 9

In this group we have associated the very large / large forms (up to 25 µm) found in the Clavaillan section Gargasian and in the basal part of the south Pichouraz section. All these species include elongated conical (i.e., Nannoconus aff. grandis and N. kamptneri) to pear-shaped tests with a typical “pear” aspect. We can see a clear relationship between the more elongated species:

- narrowest forms with a ratio central width cavity / wall thickness < 1 (N. bonetii: Pl. 10, fig. 20; N. aff. borealis);
- narrowest forms with a ratio central width cavity / wall thickness = 1, N. aff. grandis: Pl. 1, fig. 19; Pl. 10, fig. 18; N. kamptneri: Pl. 1, fig. 19; Pl. 10, fig. 17);
- wider forms (with a ratio width cavity / wall thickness = 2), N. wassali: Pl. 1, figs. 25-27.

Distribution: This group has been mainly observed in the Clavaillan upper part (Gargasian) and in the basal part of the south Pichouraz two basal samples (i.e., 2270, 2272). However some N. wassali occurs sporadically in the Bedoulian and in the GII Nannoconus Zone.

Other species:
Nannoconus steinmannii KAMPTNER, 1931
Pl. 10, figs. 1-3

Nannoconus cf. steinmannii
KAMPTNER, 1931
Pl. 10, figs. 4-5

These conical to sub-conical Nannoconus (i.e., tapers apically) have a very narrow central canal.

Distribution: Very rare specimens were observed in the uppermost Bedoulian of the Clavaillan section (Subzone NC7A) whereas BRALOWER et al. (1993) and BERGEN (1998) placed its highest occurrence in Subzone NC6B.
Acknowledgements

Many thanks to the people who have supplied helpful assistance and reviewed carefully this work. A special attention to Jean-Michel Villain, former head of TOTAL’s micropaleontology service who provide me technical assistance. Special thanks to Bruno Granier and Michel Moullade for their support and patience, this work started in 2005 has been completed in 2019 by the addition of the Clavaillan section (for this last section thanks to Christine Balme and Stéphane Legal from the "Parc Naturel Regional du Luberon"). Many thanks to Fabienne Giraudeau who first have had the difficult task to review the manuscript. Many thanks to James Bergen who also devoted a lot of his time to reviewing this work. His extensive experience with nannofossils was fundamental for the finalization of this contribution. The substance and the form owe him a lot.

Bibliographic references

BOWIN P.R. (1987).- Taxonomy, evolution and biostratigraphy of Late Triassic-Early Jurassic calcareous nannofossils.- Special Papers in Palaeontology, Durham, no. 38, 118 p. URL: https://www.palass.org/sites/default/files/media/publications/special_papers_in_palaeontolog y/number_38/SPP38.pdf

BUKRY D. (1969).- Upper Cretaceous coccoliths from Texas and Europe.- The University of Kansas Paleontological Contributions, Lawrence - KS, Article 51 (Protista 2), 79 p. URL: http://hdl.handle.net/1808/3826

Gartner S. (1968).- Coccoliths and related calcareous nannofossils from Upper Cretaceous deposits of Texas and Arkansas.- The University of Kansas Paleontological Contributions, Lawrence - KS, Article 48 (Protista 1), 56 p. URL: http://hdl.handle.net/1808/3822

REINHARDT P. & GÖRKA, H. (1967).- Revision of some Upper Cretaceous coccoliths from Poland and Germany.- Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, Stuttgart,

Tremolada F., Erba E. & Bralower T.J. (2006).- Late Barremian to early Aptian calcareous nannofossil paleoceanography and paleoecology from the Ocean Drilling Program Hole 641C (Galicia Margin).- Cretaceous Research, vol. 27, no. 6, p. 887-897.

Vekshina V.N. (1959).- Coccolithophoridaceae in Maastrichtian deposits of the West Siberian lowlands.- Trudy Instituta Geologii i Geozikizi, Sibirskoe Otdelenei, Akademiya Nauk SSSR (Nauka), Moscow, Syr`ya no. 2, p. 56-77 [in Russian].

Plates

Association GI (sample 2270): fig. 19: *Nannoconus sp. aff. grandis* DERES & ACHÉRITÉGUY, 1980; fig. 20: *Nannoconus kamptneri* BRÖNNIMANN, 1955; figs. 21-24: *Nannoconus boneti* TREJO, 1959; figs. 25-27: *Nannoconus wassallii* BRÖNNIMANN, 1955; figs. 28-29: *Nannoconus bucheri* BRÖNNIMANN, 1955; fig. 30: *Nannoconus aff. globulus* BRÖNNIMANN, 1955 (L), and *Nannoconus vocontiensis* DERES & ACHÉRITÉGUY, 1980 (R); fig. 31: *Nannoconus circularis* DERES & ACHÉRITÉGUY, 1980; fig. 32: *Nannoconus quadriangulus* DEFLANDRE & DEFLANDRE-RIGAUD, 1962; fig. 33: *Nannoconus truittii* BRÖNNIMANN, 1955 (bottom).

For each *Nannoconus* species we illustrated several specimens in order to show the natural variation in size and shape. See Figure 2 for further explanations.

2303

2323

10μm
Plate 3: figs. 1, 3: ? Nannoconus boletus DEFLANDRE & DEFLANDRE-RIGAUD, 1962 (sample 2312); figs. 2, 4-5: Nannoconus boletus DEFLANDRE & DEFLANDRE-RIGAUD, 1962 (sample 2312); fig. 6: Assipeta infracretacea (THIERSTEIN, 1973) ROTH, 1973 (sample 2304); fig. 7: ? Nannoconus carniolensis DEFLANDRE & DEFLANDRE-RIGAUD, 1962 (sample 2304); figs. 8-11: Nannoconus carniolensis DEFLANDRE & DEFLANDRE-RIGAUD, 1962 (sample 2304); fig. 12: Assipeta terebrodentarius (APPLEGATE al. in COVINGTON & WISE, 1987) RUTLEDGE & BERGEN in BERGEN, 1994 (sample 2324); fig. 13: Stauroolithites handleyi LEES, 2007 (sample 2327); fig. 14: Stauroolithites mutterlosei CRUX, 1989 (sample 2327); figs. 15-16: Stauroolithites rectus BLACK, 1971a (fig. 15, sample 2332; fig. 16, sample 2310); fig. 17: Bukrylithus ambiguus BLACK, 1971a (sample 2302); figs. 18-19, 22: Rhabdophidites parallelus (WIND & CEPEK, 1979) LAMBERT, 1987 (fig. 18, sample 2332; fig. 19, sample 2292; fig. 22, sample 2310); figs. 20-21: Rhabdophidites moeselensis MANIVIT, 1971 (fig. 20, sample 2317; fig. 21, sample 2310); fig. 23: Acaenolithus ? sp. (sample 2316); figs. 24-25: aff. Misceomarginatus WIND & WISE in WISE & WIND, 1977 (fig. 24, sample 2327; fig. 25, sample 2332); fig. 26: Zeugrhabdotus xenotus (STOVER, 1966) BURNETT in GALE et al., 1996 (sample 2339).
Plate 4: figs. 1-3, ? 9: Chiastozygus aff. tenuis Black, 1971a (figs. 1, 9, sample 2339; figs. 2-3, sample 2310); figs. 4-5: Chiastozygus platyrhenum Hill, 1976 (fig. 4, sample 2284; fig. 5, sample 2299); figs. 6-7: Tegumentum stradneri Thierstein in Roth & Thierstein, 1972 (fig. 6, sample 2322; fig. 7, sample 2284); fig. 8: Corollithion ? madagascarensis Perch-Nielsen, 1973 (sample 2284); figs. 10-11, 18: Zeugrhabdotus cf. diplogrammus (DeFlandre in DeFlandre & Fert, 1954) Burnett in Gale et al., 1996 (fig. 10, sample 2327; fig. 11, sample 2284; fig. 18, sample 2327); figs. 12-13: Zeugrhabdotus embergeri (Noël, 1958) Perch-Nielsen, 1985 (sample 2310); fig. 14: Zeugrhabdotus moulladei Bergen, 1998 (sample 2322); fig. 15: Zeugrhabdotus choffatii Rooë et al., 1973 (sample 2327); figs. 16, 23-25: Zeugrhabdotus noeliae Rooë et al., 1971 (fig. 16, sample 2339; fig. 23, sample 2327; fig. 24, sample 2310; fig. 25, sample 2304); fig. 17: Zeugrhabdotus howei Bown in Kennedy et al., 2000 (sample 2302); fig. 19: Zeugrhabdotus bicrescenticus (Stover, 1966) Burnett in Gale et al., 1996 (sample 2322); fig. 20: Tranolithus gabalus Stover, 1966 (sample 2284); figs. 21-22: Zeugrhabdotus sp. 1 (fig. 21, sample 2310; fig. 22, sample 2304).
Plate 5: figs. 1-2: Rhagodiscus asper (DEFLANDRE, 1953) VERBEEK, 1977 (fig. 1, sample 2284; fig. 2, sample 2284); fig. 3: Rhagodiscus splendens (DEFLANDRE, 1953) VERBEEK, 1977 (sample 2332); figs. 4-5: Rhagodiscus asper (STRADNER, 1963) REINHARDT, 1967 (fig. 4, sample 2324; fig. 5, sample 2299); figs. 6, 9: Rhagodiscus angustus (STRADNER, 1963) RHEINARDT, 1971 - (fig. 6, sample 2295; fig. 9, sample 2295); fig. 7: Rhagodiscus splendens (DEFLANDRE, 1953) VERBEEK, 1977 (sample 2304); fig. 8: Rhagodiscus asper (STRADNER, 1963) REINHARDT, 1967 (sample 2304); figs. 10-11: Rhagodiscus gallagheri RUTLEDGE & BOWN, 1996 (fig. 10, sample 2299; fig. 11, sample 2299); fig. 12: Cretarhabdus conicus BRAMLETTE & MARTINI, 1964, large form (sample 2304); figs. 13-15: Parlhabdolithus imperfectuosus (BLACK, 1972) LAMBERT, 1987 (fig. 13, sample 2299; fig. 14, sample 2310; fig. 15, sample 2295); fig. 16: Microstaurus chiastius (WORSLEY, 1971) BRALOVER et al., 1989 (sample 2339); fig. 17: Retecapsa schizobrachiata (GARTNER, 1968) GRÜN in GRÜN & ALLEMANNE, 1975 (sample 2327); figs. 18-20: Cretarhabdus conicus BRAMLETTE & MARTINI, 1964 (fig. 18, sample 2295; fig. 19, sample 2310; fig. 20, sample 2302); fig. 21: Microstaurus quadratus BLACK, 1971a (sample 2303); fig. 22: Grantarhabdus meddii BLACK, 1971a (sample 2342).
Plate 6: fig. 1: ? Tetrapodorhabdus decorus (DEFLANDRE in DEFLANDRE & FERT, 1954) WIND & WISE in WISE & WIND, 1977 (sample 2310); figs. 2-3, 6: Tetrapodorhabdus coptensis BLACK, 1971a (sample 2304); fig. 4: Axopodorhabdus dietzmannii (REINHARDT, 1965) WIND & WISE, 1983 (sample 2302); fig. 5: ? Tetrapodorhabdus coptensis BLACK, 1971a (sample 2304); fig. 7: Tetrapodorhabdus decorus (DEFLANDRE in DEFLANDRE & FERT, 1954) WIND & WISE in WISE & WIND, 1977 (sample 2346); fig 8: ? Axopodorhabdus dietzmannii (REINHARDT, 1965) WIND & WISE, 1983 (sample 2305); figs. 9-11: Flabellites biforaminis THIERSTEIN, 1973 (fig. 10, sample 2327; figs. 9, 11, sample 2335); figs. 12-13: Diazomalithus galicianus KÄNEL & BERGEN, 1996 (fig. 12, sample 2284; fig. 13, sample 2305); figs. 14-15: Diazomalithus lehmani NOEL, 1965 (fig. 14, sample 2295; fig. 15, sample 2284); fig. 16: Discorhabdus ignotus (GÖRKA, 1957) PERCH-NIELSEN, 1968 (sample 2339); fig. 17: Biscutum constans (GÖRKA, 1957) BLACK, 1968 (sample 2327); figs. 18, 23: Haquis circumradiatus (STOVER, 1966) ROTH, 1978 (sample 2324); fig 19: Indeterminate, monstrosus coccolith without central area? (sample 2284); figs. 20-21: Watznaueria britannicus (STRADNER, 1963) REINHARDT, 1964 (fig. 20, sample 2302; fig. 21, sample 2335); fig. 22: Biscutum dubium (NOEL, 1965) GRÜN in GRÜN et al., 1974 (sample 2327).
Plate 7: figs. 1-2: *Percivalia hauxtonensis* BLACK, 1973 (sample 2325); fig. 3: *Percivalia fenestratus* (WORSLEY, 1971) WISE, 1983 (sample 2339); fig. 4: *Picklehaube furtiva* (ROTH, 1983) APPLEGATE al. in COVINGTON & WISE, 1987 (sample 2304); figs. 5-9: *Crucibiscutum salebrosum* (BLACK, 1971a) JAKUBOWSKI, 1986 (fig. 5, sample 2332; figs. 6, 9, sample 2335; fig. 7, sample 2317; fig. 8, sample 2322); fig. 10: Indeterminate, missing central area? (sample 2284); fig. 11: *Watznaueria ovata* BUKRY, 1969 (sample 2310); figs. 12-13: *Tubodiscus burnettiae* BOWN in KENNEDY et al., 2000 (fig. 12, sample 2317; fig. 13, sample 2327); fig. 14: *Manivitella pemmatoidea* (DEFLANDRE in MANIVIT, 1965) THIERSTEIN, 1971 (sample 2317); fig. 15: *Stradnerlithus ellipticus* (BUKRY, 1969) PERCH-NIELSEN, 1984 (sample 2335); figs. 16-19: *Stoverius achlyosus* (STOVER, 1966) PERCH-NIELSEN, 1986 (fig. 16, sample 2335; figs. 17-18, sample 2302; fig. 19, sample 2304); figs. 20-21: *Braarudosphaera bigelowii* (GRAN & BRAARUD, 1935) DEFLANDRE, 1947 (fig. 20, sample 2284; fig. 21, sample 2305); fig. 22: *Braarudosphaera africana* STRADNER, 1961 (sample 2305); figs. 23-24: *Orastrum perspicuum* VAROL in AL-RIFAIV et al., 1990 (sample 2346).
Plate 8: fig. 1 Rotelapillus sp., large profile shape (sample 2327); fig. 2: Rotelapillus crenulatus (Noël, 1956) Perch-Nielsen, 1984, normal size natural light sample (sample 2299); figs. 3-5: Zebrashapka vanhintei Covington & Wise, 1987 (fig. 3, sample 2339, fig. 4, sample 2304; fig. 5, sample 2304); figs. 6-8: Eprolithus floralis (Stradner, 1962) Stover, 1966 (figs. 6-7, sample 2335; fig. 8, sample 2284); fig. 9: Stradnerolithus ellipticus (Bukry, 1969) Perch-Nielsen, 1984 (sample 2304); fig. 10: Micrantholithus obtusus Stradner, 1963 (sample 2324); figs. 11-12: Lapideacassis glans Black, 1971b (sample 2284); fig. 13: Lapideacassis mariae Black, 1971b (sample 2335); fig. 14: Lithraphidites carniolensis Deflandre, 1963 (sample 2304); figs. 15-16: Calculites dispar Varol in Al-Rifa’i et al., 1990 (fig. 15, sample 2302; fig. 16, sample 2295); figs. 17-18: Orastrum partitum (Varol in Al-Rifa’i et al., 1990) Bergen, 1998 (fig. 17, sample 2292; fig. 18, sample 2310); figs. 19-20: Hayesites irregularis (Thierstein in Roth & Thierstein, 1972) Applegate al. in Covington & Wise, 1987 (fig. 19, sample 2332; fig. 20, sample 2302); figs. 21-23: Calciosolenia (Deflandre in Deflandre & Fert, 1954) Bown in Kennedy et al., 2000 (fig. 21, sample 2345; fig. 22, sample 2304; fig. 23, sample 2322).
Plate 9: Clavaillan section

Deshayesites grandis Zone (Nannofossils association): figs. 1, 6: Discorhabdus serratus Worsley, 1971 (sample 2387); figs. 2-3, 7-8: Parabololithus infinitus (Worsley, 1971) (figs. 2, 7, sample 2385; figs. 3, 8, sample 2393); fig. 4-5, 9-10: Calcicalathina erbae Bergen, 1998 (sample 2385); figs. 11 (LN), 16 (LP): Lapideacassis sp. (sample 2395); figs. 12 (LN), 17 (LP): Lapideacassis glans Black, 1971b (sample 2385); fig. 13: Lapideacassis glans Black, 1971b (sample 2387); fig. 14: Micrantholithus obtusus Stradner, 1963 (sample 2385); fig. 15: Eiffellithus hancockii Burnett, 1997 (sample 2389); fig. 18, Calculites dispar Varol in Al-Rifa’I et al., 1990 (sample 2389); fig. 19: Conusphaera rothii (Thierstein, 1971) Jakubowski, 1986 (sample 2387); fig. 20: Tetralithus ? malticus Worsley, 1971 (sample 2387); figs. 21-22: Radiolithus planus Stover, 1966 (sample 2386); fig. 23: Eprolithus floralis (Stradner, 1962) Stover, 1966 (sample 2387); fig. 24: Rhagodiscus angustus (Stradner, 1963) Reinhardt, 1971 (tiny specimen, sample 2387); fig. 25: Rhagodiscus angustus (Stradner, 1963) Reinhardt, 1971 (sample 2395).
Plate 10: Clavaillan section

Deshayesites grandis Zone (*Nannoconus* association B): figs. 1-3: *N. steinmanii* KAMPTNER, 1931 (fig. 1, sample 2393; fig. 2, sample 2385; fig. 3, sample 2386); figs. 4-5: *N. cf. steinmanii* KAMPTNER, 1931 (sample 2387); figs. 6-7: *N. elongatus* BRÖNNIMANN, 1955 (fig. 6, sample 2385; fig. 7, sample 2386); fig. 8: ? *N. elongatus* BRÖNNIMANN, 1955 (sample 2386); fig. 9: *N. wassalli* BRÖNNIMANN, 1955 (sample 2385); fig. 10: *Nannoconus* aff. *borealis* PERCH-NIELSEN, 1979 (sample 2393); fig. 11: *N. boneti* TREJO, 1959 (sample 2393); fig. 12: *N. bucheri* BRÖNNIMANN, 1955 (large cavity, sample 2388); fig. 13: *N. bucheri* BRÖNNIMANN, 1955 (thin wall specimen, sample 2388); fig. 14: *N. bucheri* BRÖNNIMANN, 1955 (short specimen, sample 2388); fig. 15: *N. circularis* DERES & ACHÉRITÉGUY, 1980 (sample 2387).

Dufrenoyia furcata Zone (*Nannoconus* association GI): fig. 16: *N. inconspicuus* DEFLANDRE & DEFLANDRE-RIGAUD, 1962 (sample 2407); fig. 17: *N. kamptneri* BRÖNNIMANN, 1955 (sample 2407); figs. 18-19: *N. aff. grandis* DERES & ACHÉRITÉGUY, 1980 (fig. 18, sample 2407; fig. 19, sample 2406); fig. 20: *N. boneti* TREJO, 1959 (sample 2407); figs. 21-24: *Assipetra*. 21-22: large forms (above 10µm), 23-24: small forms (below 10µm); figs. 21, 23-24: *Assipetra terebrodentarius* (APPLEGATE al. in COVINGTON & WISE, 1987) RUTLEDGE & BERGEN in Bergen, 1994 (sample 2386); fig. 22: *Assipetra infracretacea* (THIERSTEIN, 1973) ROTH, 1973 (sample 2386); fig. 25: *N. vocontiensis* DERES & ACHÉRITÉGUY, 1980 (sample 2407).