◄ Carnets Geol. 25 (12) ►
Outline:
[1. Introduction]
[2. Geological setting]
[3. Materials and methods]
[4. Systematic palaeontology]
[5. Discussion] and ...
[Bibliographic references]
Dipartimento di Scienze della Terra dell'Ambiente e delle Risorse, Università
degli Studi di Napoli Federico II, Complesso universitario di Monte
Sant'Angelo, via Cintia, 21, 80126 Napoli (Italy)
Department of Geology and Center for Integrated Geological Studies, Babeş-Bolyai
University, str. M. Kogălniceanu nr. 1, 400084 Cluj-Napoca (Romania);
Romanian Academy, Cluj Branch, str. Republicii nr. 9, 400015 Cluj-Napoca
(Romania)
Published online in final form (pdf) on November XX, 2025
DOI
10.2110/carnets.2025.2512
[Editor: Bruno
R.C. Granier; language editor: Robert W. Scott]
The green alga Palaeodasycladus
(Pia, 1920) was recognized in shallow marine, high-energy calcarenites
from the Lower Jurassic Choč Nappe (Hronicum domain) in the Tatra Mountains of
Poland. The algal structure is described here. The calcareous skeleton has a
regular internal cavity, probably close to the central axis, but very irregular
outwardly, enveloping the primary laterals at different lengths. The general
shape of the thallus is spherical, with only long, acrophorous primary laterals,
probably forming a distal cortex. The external gametophores are attached
laterally to the primary laterals. The characteristics allow the alga to be
assigned not to Palaeodasycladus (Pia, 1920) but to Goniolina
Orbigny, 1850.
The new species Goniolina
tatrarum n.sp. is here established. A critical review of the genus Goniolina
Orbigny, 1850, and its type species is also provided. The genus Goniolina Orbigny
appears to have been represented so far solely by G. hexagona Orbigny,
1850. G. geometrica Buvignier,
1852,
and G. micraster Buvignier, 1852,
are considered valid and separate species to be assigned to Coniporella Fisher
& Thierry, 1971.
Sphaerites regularis
Quenstedt, 1852, a supposed junior synonym of Goniolina geometrica
(Roemer, 1839), is provisionally assigned to the genus Tersella Morellet
in Morellet & Ters, 1952, and indicated as Tersella
(?) regularis (Quenstedt, 1852).
• Dasycladales;
• Goniolina;
• new taxon;
• Early Jurassic;
• Tatra Mountains
Barattolo F. & Bucur I.I. (2025).- Reinterpretation of "Palaeodasycladus" (Chlorophyta, Dasycladales) from the Lower Jurassic of the Tatra Mountains, Poland.- Carnets Geol., Madrid, vol. 25, no. 12, p. 255-xxx. DOI: 10.2110/carnets.2025.2512
Réinterprétation
de "Palaeodasycladus" (Chlorophyta, Dasycladales) du Jurassique inférieur
de Tatra Mountains (Pologne).-
L'algue verte Palaeodasycladus (Pia, 1920) a été reconnue dans
des calcarénites de milieu marin peu profond et agité du Jurassique inférieur
de la Nappe de Choč (domaine Hronicum) dans les montagnes des Tatras en
Pologne. La structure de l'algue est décrite. Son squelette calcaire présente
une cavité interne régulière probablement proche de l'axe central, mais très
irrégulière vers l'extérieur enveloppant les latérales primaires sur différentes
longueurs. La forme générale de son thalle est sphérique avec seulement des latérales
primaires, longues et acrophores, formant probablement un cortex distal. Ses gamétophores
externes sont attachés sur le côté des latérales primaires. Ces caractères
permettent d'attribuer l'algue non pas à Palaeodasycladus (Pia,
1920) mais à Goniolina Orbigny,
1850.
La nouvelle espèce Goniolina
tatrarum n.sp est ici créée. Une revue critique du genre Goniolina Orbigny,
1850, et de son espèce type est également fournie. Le genre Goniolina Orbigny
semble être représenté uniquement par G. hexagona Orbigny,
1850. G. geometrica Buvignier,
1852, et G. micraster Buvignier,
1852, sont considérées comme deux espèces valides et distinctes à attribuer
à Coniporella Fisher & Thierry,
1971.
Sphaerites
regularis Quenstedt, 1852,
synonyme junior supposé de Goniolina geometrica (Roemer,
1839), est provisoirement attribué au genre Tersella Morellet in
Morellet & Ters, 1952, et indiqué comme Tersella (?) regularis
(Quenstedt, 1852).
• Dasycladales ;
• Goniolina ;
• taxon nouveau ;
• Jurassique inférieur ;
• Tatras
Calcareous algae represent an informal group of simple plants whose thallus is jacketed with calcium carbonate, which has favoured their preservation as fossils (Pia, 1920; Wray, 1977). Within this group, the green algae Dasycladales stand out by being good indicators of paleoenvironment (like their Holocene representatives that lived at low latitudes, in warm, shallow, well-lighted waters (e.g., Pia, 1920; Valet, 1969; Conrad, 1977; Barattolo, 1991; Flügel, 1991; Berger & Kaever, 1992; Bucur & Săsăran, 2005; Granier, 2012). Some Dasycladales genera and species are also good age indicators. They have a relatively short duration on a geological scale, being good index fossils at the stage or substage level (e.g., Pia, 1920; Barattolo, 1991, 2002; Deloffre & Granier, 1993; Granier & Deloffre, 1994, 1995; Bucur, 1999; Barattolo & Romano, 2005; Bucur & Reolid, 2024).
Based on these characteristics, fossil dasycladalean algae have also been used for paleogeographic reconstructions (e.g., Mu, 1993; Yilmaz, 1999; Taherpour et al., 2013; Bucur et al., 2020). To be confident, palaeoecological, stratigraphic or paleogeographic remarks on these fossils must be always based on a good and correct determination. To have merit, such reconstructions must be based on accurate taxonomic assignments. This is the case of the article published by Rychlinski et al. (2018) in which, as will be shown below, remains of some dasycladalean algae were erroneously interpreted as belonging to the genus Palaeodasycladus (P. cf. mediterraneus Pia). On this basis, the authors developed a new paleogeographic distribution of this alga, indicating what they considered to be its northernmost occurrence.
The aim of the present work is to provide a revised interpretation of the alga illustrated by Rychlinski et al. (2018). According to their morphological characteristics, these remains are attributed to a new species of the genus Goniolina Orbigny, 1850. In view of this change, the paleogeographic interpretation advanced by Rychlinski et al. (2018) is no longer valid.
From a geological point of view the outcrop with Goniolina tatrarum n.sp., belongs to the Mesozoic succession of the Choč Nappe (Upper Sub-Tatric) referred to the Hronicum domain of the Central Western Carpathians Basin. For more details we refer to Rychlinski et al. (2018).
The study is based on the figures provided by Rychlinski et al. (2018). The material is licensed by Swiss Journal of Geosciences (Springer Nature), License Number 6114910131117 on Sep 23, 2025.
IGS, Institute of Geological Sciences, Jagiellonian University in Krakow, Poland.
This published work and the nomenclatural acts it contains have been registered in Plant Fossil Names Registry (PFNR): urn:lsid:plantfossilnames.org:ref:974
Order Dasycladales Pascher, 1931
Family Bornetellaceae Granier & Bucur in Granier et al., 2013
Tribe Bornetelleae L. Morellet & J. Morellet, 1913
Genus Goniolina Orbigny, 1850
Type species. Goniolina hexagona Orbigny; "Corallien", Pointe-du-Ché (Chay?), near La Rochelle (Charente-Maritime), SW France.
Emended
diagnosis. Spherical thallus, euspondyl. Phloiophorous primary laterals only.
Reproductive organs set laterally on primary laterals (goniosporate type) (Fig. 1 ).
Description.
The original diagnosis by Orbigny (1850) is: "It is a Conodictyum
without pores, with the surface divided into regular hexagons" (translation
from Bassoullet et al., 1978). According to Pia
(1920) the
thallus is composed of a terminal ovoid part and a basal cylindrical peduncle
without traces of branches. Ovoid terminal part presents on its outer
surface hexagonal or pentagonal cortical plates, at the end of terminal
branches. Two probable orders of branches. Euspondyl type (see Bassoullet
et al., 1978). Cherchi and Schroeder
(1993) re-described the Orbigny's material, but they do not supply a
generic diagnosis. According to their description, the thallus is spherical with
euspondyl, phloiophorous primary laterals only, and with reproductive organs set
laterally on the laterals (goniosporate type) (Fig. 1 ).
Figure 1:
Reconstruction of the dasycladalean alga Goniolina
hexagona Orbigny (1850), Kimmeridgian of La Rochelle (Charente-Maritime),
SW France. Left:
extracellular calcified skeleton (yellow), intracellular cortical calcification
(orange), soft parts (grey) and gametophores (black) in axial section, only two
central laterals are depicted; right: axial view of the soft parts
(green), only laterals of tree central whorl are depicted. |
Remarks. Goniolina is one of the dasycladalean algae whose phylogenetic affinity has been much discussed and disputed. The genus Goniolina was established by Orbigny (1850, p. 41) who considered it close to Conodictyum but without pores, with a surface divided into regular hexagons. The genus was monospecific, therefore, even if not formally designated by Orbigny, type species is Goniolina hexagona ["a very remarkable species, representing an oval of 33 mm in diameter, decorated all over with concentric and quincunx lines of very regular hexagons"]. It should be noted that at that time the dasycladalean alga Conodictyum was considered a foraminifer.
However, a possible Goniolina species was established by F.A. Roemer (1839, p. 36, Pl. XVIII, fig. 39) under the name Chama? geometrica, considered to represent a lamellibranchiate valve, this correspond to the first mention of the geometrica epithet. Without considering Roemer's work, Buvignier (1852, p.47) described two species of the genus Goniolina Orbigny: Goniolina geometrica Buv., Pl. XXXII, figs. 56-57, and Goniolina micraster Buv., Pl. XXXII, figs. 58-59, the latter was considered as a senior synonym of the species Goniolina hexagona by Cherchi and Schroeder (1992). Buvignier (1852) considered the two species as belonging to polypiers. Other authors have attributed the fossils of Goniolina with reservation to echinoderms, bryozoans, terebratulid brachiopods, tunicates or sponges (see Cherchi & Schroeder, 1993, p. 239).
Saporta (1891) attributed Goniolina to plants, specifically to monocotyledons. A first suggestion of these fossils as algae was advanced by Steinmann (1880, p. 138), but the author doubted this affiliation because the branches of this genus do not open freely at the surface of the calcareous skeleton but are closed on the outside by polygonal calcareous plates. The one who assigned Goniolina to algae was Schenk (1890, p. 192).
The history of the species
attributed to Goniolina is quite complicated as well as the assignment of
type species. Fundamentally, this depends on the peculiar shape of the fossil
instituted by Orbigny (1850), i.e.,
an ovoid body covered by juxtaposed hexagonal calcareous tiles. The author gave
a description of the species Goniolina hexagona (Orbigny,
1850, p.
41) but did not illustrate it. Two years later Buvignier
(1852, Atlas, p. 47) described and figured two new species, Goniolina
geometrica Buvignier, 1852, whose hexagonal facets display six,
slightly projecting rays [Fig. 2 (1a-1b) ] and Goniolina micraster Buvignier,
1852, slightly smaller than the previous species and whose hexagonal facets form a hollow ring surrounding a convex disc with a punctiform embedded center [Fig. 2 (1c)
], seemingly corresponding to the scar left by a deciduous
assimilator.
Figure 2:
Schemes of some dasycladalean algae with spherical thalli like Goniolina Orbigny
(1850): 1a)
Goniolina geometrica Buvignier (1852), Calcaire à Astartes (upper
Oxfordian) of Senoncourt-les-Maujouy, département de la Meuse, NE France; 1b)
cortical mesh of Goniolina geometrica Buvignier
(1852, Pl. 32,
fig. 36); 1c) cortical mesh of Goniolina micraster Buvignier
(1852, Pl. 32, fig. 38); 2) Sphaerites regularis Quenstedt
(1852), Kimmerigian of Tribsow, Pomerania, Poland [interpretation
based on Cherchi & Schroeder,
1992, Pl. 1, fig. 1, sub
Goniolina hexagona Orbigny (1850)]; 3) Landereria decastroi Cherchi & Schroeder
(2006), environs of Morella, Aptian, Castellon province, E Spain. For
all figures left: extracellular calcified skeleton (yellow),
intracellular cortical calcification (orange), soft parts (grey) in axial
section, only central laterals are depicted; right: axial view of the
soft parts (green), only laterals of central whorls are depicted. |
In the same year Quenstedt (1852, p. 630, Pl. 61, fig. 25) described a new species, Sphaerites regularis, from the Portlandkalke of Kammin, Pomerania region.
A few years later Chama (?) geometrica Roemer, 1839, a bivalve with the impression of hexagonal plates on a valve, was transferred in the genus Goniolina Orbigny. Furthermore, Goniolina geometrica Buvigner, 1852, was considered a junior synonym (and homonym) of this former species (Seebach, 1864, p. 87). The following authors accepted the synonymy, and the species was cited as Goniolina geometrica (Roemer, 1839).
Finally, Saporta (1891, p. 219) considered Goniolina hexagona Orbigny, the type species of the genus, junior synonym of Goniolina geometrica (Roemer, 1839). Therefore, for principle of priority, this latter species became the type species and the only species of the genus Goniolina Orbigny. Also, Sphaerites regularis Quenstedt (1852) was considered a junior synonym of Goniolina geometrica (Roemer, 1839).
All taxa established in the middle of the 19th century are often depicted in a schematic way and always in external view. It should not be forgotten that these algae were not recognized as such. It is not surprising that in the revision phase Saporta (1891) considered all these species as belonging to one. Studies of the last century, however, allow us to reconsider the taxonomic status of these forgotten species. Therefore, the taxonomical steps shown above should be re-examined.
As to the taxa described by Buvignier (1852), it is noteworthy that the presence or absence of the scar on the facets is a character at species level. For example, it is used, among other characters, to distinguish the species of the genus Bornetella (e.g., see Berger & Kaever, 1992, p. 95 and Fig. 3.25c, and p. 99 and Fig. 2.29d for Bornetella nitida (Harvey, 1857) and Bornetella sphaerica (Zanardini, 1878) respectively). Such a character usually cannot be applied to fossil dasycladales because the cortical meshes are not calcified, but it is possible when the facets are well calcified as in the genera Goniolina Orbigny, 1850, Stichoporella Pia, 1922, and Coniporella Fisher & Thierry, 1971. Accordingly, the two Buvignier's (1852) species should be treated as separated taxa.
Chama (?) geometrica Roemer, 1839, has been discussed by Cherchi and Schroeder (1992). Ultimately the taxon is a finely ribbed oyster and on its upper valve a hexagonal pattern is found as a xenomorph sculpture of a fossil that the two authors refer to Goniolina hexagona Orbigny, 1850. Anyway, the attribution of Chama (?) geometrica Roemer, 1839, to the genus Goniolina Orbigny should be discarded as well as the synonymy with Goniolina geometrica Buvignier, 1852. There is no way of associating the regular smooth hexagonal meshes observed on the valve to the genus Goniolina Orbigny, much less to Goniolina geometrica Buvigner, 1852.
Even the solution proposed by Saporta (1891) to include all known goniolinids in a single species does not seem acceptable. Goniolina geometrica (Roemer, 1839) sensu Saporta, 1891, looks heterogeneous, gathering different taxa. Indeed, according to Saporta and Marion (1881, p. 1270) and Saporta (1891, p. 213-214), the genus must be interpreted as an external mold, therefore the internal structures were destroyed (i.e., only the distal cortical part is calcified and preserved) except for the specimens of the Orbigny's collection where an internal structure can be observed in a broken specimen (Saporta, 1891, Pl. CCLVIII, fig. 3). Deecke (1901, p. 472-473) studied some Goniolina specimens from the Pomerania region. He observed the similar thin cortical calcification and judged that such a character was sufficient to put them in two separate genera. Pia (1920, p. 113) disagreed with Deecke's opinion.
Finally, Cherchi
and Schroeder (1993) restudied the Orbigny's collection and
showed that Goniolina hexagona Orbigny, 1850, has thin, phloiophorous primary laterals with numerous lateral
gametophores around them (Fig. 1 ). Furthermore, the two authors designated the
specimen in Saporta (1891, Pl. CCLIX, fig. 2) as lectotype. However, one
year before, Cherchi and Schroeder
(1992)
restudied the algae from the Pomerania region previously described by Quenstedt
(1852) as Sphaerites regularis. They agree with the opinion expressed by Pia
(1920, p. 113, see before) and referred the algal specimens to Goniolina
hexagona Orbigny, 1850. In this paper the authors displayed that here
and there the cortical laterals have a rosette-shaped arrangement (Cherchi
& Schroeder, 1992, Pl. II, figs. 3-5). Such a pattern usually
indicates that laterals are at least of second order (also considered by Cherchi
& Schroeder, 1992, p. 12). The specimens from the Pomerania region, i.e., Sphaerites regularis Quenstedt,
1852, must be
separated from Goniolina hexagona Orbigny by exhibiting laterals
calcified only peripherally and probably assigned to a different genus because
laterals are of second order [Fig. 2 (2)
]. The specimen figured by Quenstedt
(1852) should have been stored in the Eberhard Karls Universität Tübingen, but
our research has been unsuccessful. The specimen probably should be considered
missing. A neotype is here designated. The specimen illustrated by Cherchi
and Schroeder (1992, Pl. 1, fig. 1) has been chosen. The specimen is
stored in Museum der Fachrichtung Geowissenschaften der Universität Greifswald,
collected by A. Roemer in Tribsow and indicated as Goniolina
geometrica, sample II.2 (Cherchi & Schroeder,
1992,
p. 5).
In conclusion, the genus Goniolina
Orbigny looks to be represented only by Goniolina
hexagona Orbigny, 1850, whose lectotype is Saporta
(1891,
Pl. CCLIX, fig. 2) designated by Cherchi and Schroeder
(1993). Goniolina
geometrica Buvignier, 1852, and Goniolina micraster Buvignier,
1852, could be tentatively assigned to the genus Landereria Cherchi
& Schroeder, 2006 [Fig. 2 (3) ], or Coniporella Fisher
& Thierry, 1971. The occurrence of calcification limited to a thin
cortex composed of facets superficially sealed and arranged in whorls points to
the second hypothesis. Therefore, they are indicated as Coniporella geometrica
(Buvignier, 1852) and Coniporella micraster (Buvignier,
1852).
Sphaerites regularis Quenstedt (1852) from the Pomerania region most likely corresponds to a species different from Goniolina hexagona Orbigny, 1850, because the calcified cortical is made by secondary laterals. The species is assigned tentatively to the genus Tersella Morellet in Morellet & Ters, 1952 (e.g., see Granier et al., 2016), and indicated as Tersella (?) regularis (Quenstedt, 1852). It may seem like fate's joke that the characters of this species closely match those of the genus Goniolina Orbigny assumed by Pia (1920).
Subsequent mentions of Goniolina species belong to Pugaczeska (1971), Silva-Pineda (1977, the only mention outside Europe), Dzik (1979), Erbacher (1987), Schormann and Zawicha (1991), Sturm and Brauckmann (1999), Wittler (2000), and Moreau et al. (2016, 2023).
Goniolina tatrarum n.sp.
Origin of the name: Named from the Tatra Mts., in Latin "of Tatra (Mts.)".
Type material: Holotype: axial section (Fig. 3
(2)
= Rychliński et
al., 2018, Fig. 5b),
IGS-BP1A1. Paratypes: specimens contained in the thin sections, IGS-BP1A1 and
IGS-BP1B (Fig. 3 (8-9)
= Rychliński et al., 2018, Fig. 5a). The outcrop is located on the western
side of the Brama Kantaka, Tatra Mts., Poland (Rychliński et
al., 2018, Fig. 1b), coordinates approx. 49°16'22.24"N,
19°52'09.73"E.
Type stratum: upper Sinemurian - lower Pliensbachian.
Depository: Institute of Geological Sciences, Jagiellonian University in Krakow, Poland.
Diagnosis: Spherical simple thallus. Only primary laterals, long, acrophorous to slightly flaring outwards. They probably make a cortex distally. Spherical reproductive organs attached laterally on primary laterals (gametophores). Calcareous skeleton with a regular inner cavity (close to the central axis) but very irregular outwards enveloping primary laterals at different lengths.
Description: The calcareous sleeve
is simple, not articulated, closed at the top. The shape is roughly spherical,
as long as wide [Fig. 3 (2) ]. The lower part is tapered
[Fig. 3 (2)
]. The inner
surface is usually regular [Fig. 3 (3, 5-6)
], seemingly close to the central
stem. The inner cavity is quite small. The outer surface is very irregular in
some specimens [Fig. 3 (2 up, 3 down left, 4, 5 up, 9)
] and in others more
regular, undulose [Fig. 3 (2 right, 3 upper right, 5 down, 6
right)
].
Calcification encrusts the inner part of primary laterals, probably up to the
middle-outer part [Fig. 3
(5, 9)
]. Although the character is not very
recognisable, the primary laterals are set in close whorls [Fig. 3
(2, 8)
], with
24-36 per whorl. The distance between whorls (h) is relatively low (0.137 mm).
The arrangement apparently alternates in two subsequent whorls [Fig. 3
(8)
]. In
the lower part of the calcareous skeleton, primary laterals are bent downward,
with respect to the vertical axis [Fig. 3 (2)
]. In the middle part, they are
roughly orthogonal, and inclined then decrease towards the top
where they are arranged vertically [Fig. 3 (2)
]. The primary laterals are long
and acrophorous, in some specimens they gently increase in size outwards
[compare grey arrows in Fig. 4 (3)
]. Corpuscles of 0.047-0.097 mm are found
between laterals and attached sideways to primary laterals (Fig. 4
, white arrows).
In other specimens short appendages branch transversely to the primary
laterals (Fig. 4
, black arrows). Such structures are related to the
occurrence of lateral gametophores (goniosporate reproduction).
Figure 3:
Dasycladalean alga Goniolina tatrarum n.sp. from the upper Sinemurian -
lower Pliensbachian, western side of the Brama Kantaka, Tatra Mts., Poland: 1)
Scheme of the calcareous skeleton of the alga, calcification in black, pores in
white colour with the traces of cuts (red lines) of figures 3 (2-9); 2) holotype,
axial section. 3) paratype, oblique section; 4) paratype,
oblique section, close to the apex; 5) paratype, subtransversal section,
probably in the lower part of the thallus; 6) paratype, subtransversal
section; 7) paratype, probably oblique section of a broken specimen; 8)
paratype,
tangential section; 9) paratype, subtransversal section, probably in the lower
part of the thallus. Scale bar = 0.50 mm. Samples: IGS-BP1A1
(2-7), IGS-BP1B (8-9). |
Figure 4:
Dasycladalean alga Goniolina tatrarum n.sp. from the upper Sinemurian -
lower Pliensbachian, western side of the Brama Kantaka, Tatra Mts., Poland: 1)
Detail of Fig. 3 (6) |
Measurements: D: 1.152-1.842 mm; d: 0.304-0.572 mm; p: 0.044-0.088 mm; h: 0.137 mm; w: 24-36.
Table 1. Dimensions (mm) of Goniolina tatrarum n.sp. d, internal diameter (diameter of the axial cavity); l axis, length of the axis; D, external diameter; l, length of first order laterals; pi, proximal width of primary laterals; p, width of primary laterals (outer part); h, distance between whorls; w, number of primary laterals per verticil (estimated); da, width of gametophores; la, length of gametophores.
Id. number | Sample | Specimen | d | l axis | D | pi | p | l | h | w | da | la |
1 | IGS-BP1A1 | 0 | 0.518 | 1.197 | 0.049 | 24 | ||||||
2 | IGS-BP1B | a1 | 0.572 | 1.842 | 0.072 | |||||||
3 | IGS-BP1B | a2 | 0.081 | 0.137 | ||||||||
4 | IGS-BP1A1 | b | 0.448 | 0.788 | 1.181 | 0.044 | 0.388 | |||||
5 | IGS-BP1A1 | c | 0.304 | 1.152 | 0.049 | 12 | 0.048 | 0.048 | ||||
6 | IGS-BP1A1 | d | 0.508 | 1.414 | 0.050 | 22 | 0.047 | |||||
7 | IGS-BP1A1 | e | 1.811 | 0.039 | 0.073 | |||||||
8 | IGS-BP1A1 | f | 0.549 | 1.609 | 0.088 | 0.638 | 22 | 0.097 | ||||
Number | 6 | 1 | 7 | 1 | 8 | 2 | 1 | 4 | 3 | 1 | ||
Min | 0.304 | 0.788 | 1.152 | 0.039 | 0.044 | 0.388 | 0.137 | 12 | 0.047 | 0.048 | ||
Max | 0.572 | 0.788 | 1.842 | 0.039 | 0.088 | 0.638 | 0.137 | 24 | 0.097 | 0.048 | ||
Average | 0.483 | 0.788 | 1.458 | 0.039 | 0.063 | 0.513 | 0.137 | 20.000 | 0.064 | 0.048 | ||
St. Deviation | 0.097 | 0.299 | 0.017 | 0.177 | 5.416 | 0.029 |
Remarks: The green alga referred to Palaeodasycladus cf. mediterraneus (Pia, 1920) by Rychlinski et al. (2018) displays a thallus with a spherical shape and a regular inner cavity probably indicating that the calcareous skeleton was close to the central axis. At the same time, the calcareous skeleton is very irregular outwards enveloping only primary laterals at different lengths, no ramification can be observed. Structures possibly interpreted as external gametophores are remarkably attached laterally on primary laterals. Conversely, all species of the genus Palaeodasycladus (Pia, 1920) exhibit an elongated club-shaped thallus and three order of laterals. No structures possibly related to external reproductive organs have ever been observed. Therefore, the attribution to Palaeodasycladus (Pia, 1920) must be excluded. The alga can be assigned to a new species, Goniolina tatrarum n.sp., based on the diagnostic features mentioned above, and attributed to the genus Goniolina Orbigny, 1850. According to the characters of the genus evidenced by Cherchi and Schroeder (1992), Goniolina Orbigny, 1850, has been monospecific so far. The new species differs from the type species by many and marked differences. The general size of the thallus (D) is very small (less than 2 mm vs. 28 mm, see Cherchi & Schroeder, 1993). The calcareous skeleton is restricted to the lower middle part of the primary laterals and the cortex is not preserved.
Figure 5:
Goniolina tatrarum n.sp.: 1)
Reconstruction of the alga in axial view; left: calcified skeleton (yellow), soft parts
(grey) and gametophores (black) in axial section; right: axial view of
the soft parts (green); 2) reconstruction of the
alga in transverse section. B1, left: calcified skeleton (yellow),
soft parts (grey) and gametophores (black) in axial section; right: axial
view of the soft parts (green). Scale bar= 0.5 mm. |
Occurrence: Type locality and horizon only.
Rychliński
et al. (2018) referred the taxon to Palaeodasycladus
cf. mediterraneus Pia, according a wider paleogeographic distribution for this alga supposing Tatra Mts to be
its northernmost occurrence. The paleogeographic interpretation formulated by Rychlinski
et al. (2018) is no longer valid due
to the erroneous attribution to Palaeodasycladus (Pia). Conversely,
Goniolina tatrarum n.sp. (Fig. 5 )
is more interesting from the evolutionary point
of view. The occurrence of external gametophores is well documented in the Late
Triassic and Early Jurassic (Barattolo et
al., 2021). The existence of gametophores aside on primary laterals of Goniolina
tatrarum n.sp. suggests that Bornetellaceans were already quite diversified
in the Early Jurassic.
We would like to thank Bruno Granier (Université de Bretagne Occidentale, Brest, France) for the discussion about Goniolina. A sincere thanks to Steven LoDuca (Eastern Michigan University, Ypsilanti, USA) and Tonći Grgasović (Croatian Geological Survey, Zagreb, Croatia) for their very helpful reviews of the manuscript.
Barattolo F. (1991).- Mesozoic and Cenozoic marine benthic calcareous algae with particular regards to Mesozoic dasycladaleans. In: Riding R. (ed.), Calcareous algae and stromatolites.- Springer Verlag, Berlin, p. 504-540.
Barattolo F. (2002).- Late Cretaceous-Paleogene dasycladaleans and the K/T boundary problem. In: Bucur I.I. & Filipescu S. (eds.), Research advances in calcareous algae and microbial carbonates.- Cluj University Press, Cluj-Napoca, p. 17-40.
Barattolo F. & Romano R. (2005).- Shallow carbonate platform bioevents during Upper Triassic-Lower Jurassic: An evolutive interpretation.- Bolletino della Società Geologica Italiana, Roma, vol. 124, p. 123-142.
Barattolo F., Romano R. & Conrad M.-A. (2021).- Evidence of external gametophores in puzzling Upper Triassic-Lower Jurassic dasycladalean green algae.- Acta Paleontologica Polonica, Varsaw, vol. 66, no. 4, p. 901-919. DOI: 10.4202/app.00883.2021
Bassoullet J.-P., Bernier P., Conrad M.-A., Deloffre R. & Jaffrezo M. (1978).- Les algues Dasycladales du Jurassique et du Crétacé.- Geobios, Mémoire spécial 2, 330 p.
Berger S. & Kaever M.J. (1992).- Dasycladales. An illustrated monograph of a fascinating algal order.- Thieme Verlag, Stuttgart, 247 p.
Bucur I.I. (1999).- Stratigraphic significance of some skeletal algae (Dasycladales, Caulerpales) of the Phanerozoic. In: Farinacci A. & Lord A.R. (eds.), Depositional Episods and Bioevents.- Palaeopelagos Special Publication, Roma, vol. 2, p. 53-104.
Bucur I.I. & Reolid M. (2024).- Incidence of the early Toarcian global change on Dasycladales (Chlorophyta) and the subsequent recovery: Comparison with end-Triassic mass extinction.- Earth-Science Reviews, vol. 249, article 104666, 22 p. DOI: 10.1016/j.earscirev.2023.104666
Bucur I.I. & Săsăran E. (2005).- Relationship between algae and environment: an Early Cretaceous case study, Trascău Mountains, Romania.- Facies, Erlangen, vol. 51, p. 274-286.
Bucur I.I., Rigaud S., Del Piero N., Fucelli A., Heerwagen E., Peybernes C., Peyrotty G., Vérard C., Chablais J. & Martini R. (2020).- Upper Triassic calcareous algae from the Panthalassa Ocean.- Rivista Italiana di Paleontologia e Stratigrafia, Milano, vol. 126, no. 2, p. 499-540. DOI: 10.13130/2039-4942/13681
Buvignier A. (1852).- Statistique géologique, minéralogique, minérailurgique et paléontologique du département de la Meuse.- J.B. Baillière, Paris, 694 p. URL: https://orage.univ-lorraine.fr/s/orage/item/6063
Cherchi A. & Schroeder R. (1992).- Goniolina hexagona Orbigny [Dasycladaceae] aus dem Kimmeridge vom Südrand der Pommerschen Bucht.- Zeitschrift für geologische Wissenschaften, Berlin, Band 20, Heft 1/2, p. 3-26.
Cherchi A. & Schroeder R. (1993).- Nouvelles observations sur Goniolina hexagona Orbigny Algue Dasycladale du Kimméridgien.- Paläontologische Zeitschrift, Stuttgart, Band 67, Heft 3/4, p. 239-244.
Cherchi A. & Schroeder R. (2006).- Landereria decastroi n. gen., n.sp., a giant dasyclad (Chlorophyta) from the lower Aptian of eastern Spain.- Bollettino della Società Paleontologica Italiana, Modena, vol. 45, no. 1, p. 35-42. URL: https://www.paleoitalia.it/wp-content/uploads/2024/07/035_042_Cherchi.pdf
Conrad M.A. (1977).- The Lower Cretaceous calcareous algae in the area surrounding Geneva (Switzerland): biostratigraphy and depositional environment. In: Flügel E. (ed.), Fossil algae.- Springer, Heidelberg, p. 295-300.
Deecke W. (1901).- Ueber Hexagonaria v. Hag. und Goniolina Roem.- Centralblatt für Mineralogie, Geologie und Palaeontologie, 1901, p. 469-473.
Deloffre R. & Granier B. (1993).- Inventaire critique des algues dasycladales fossiles. 1ère partie.- Revue de Paléobiologie, Genève, vol. 11, no. 2 (1992), p. 331-356.
Dzik J. (1979).- Some terebratulid populations from the lower Kimmeridgian of Poland and their relations to the biotic environment.- Acta Palaeontologica Polonica, Warsaw, vol. 24, no. 4, p. 473-492.
Erbacher J. (1987).- Ein besonderes Fossil.- Paläontologische Zeitschrift, Stuttgart, Band 61, Heft 1/2, p. 1-2.
Fischer J.-C. & Thierry J. (1971).- Révision de quelques Dasycladacées jurassiques et proposition d'un nouveau genre : Coniporella.- Bulletin du Muséum National d'Histoire Naturelle (3e série), Paris, no. 19, p. 25-34.
Flügel E. (1991).- Triassic and Jurassic marine calcareous algae: A critical review. In: Riding R. (ed.), Calcareous algae and stromatolites.- Springer Verlag, Berlin, p. 481-503.
Granier B. (2012).- The contribution of calcareous green algae to the production of limestones: A review. In : Basso D. & Granier B. (eds.), Calcareous algae and the global change: from identification to quantification.- Geodiversitas, vol. 34, no. 1, p. 35-60. DOI: 10.5252/g2012n1a3
Granier B., Cougnon M., Bucur I.I. & Prieur A. (2016).- Redécouverte de la Tersella incompleta J. Morellet in J. Morellet & Ters, 1952, une algue Dasycladale du Jurassique basal de Vendée (centre-ouest de la France).- Archives des Sciences, Genève, vol. 68, no. 2 (2015), p. 163-172.
Granier B. & Deloffre R. (1994).- Inventaire critique des algues dasycladales fossiles. IIe partie - les algues dasycladales du Jurassique et du Crétacé.- Revue de Paléobiologie, Genève, vol. 12, no. 1 (1993), p. 19-65.
Granier B. & Deloffre R. (1995).- Inventaire critique des algues dasycladales fossiles. IIIe partie - les algues dasycladales du Permien et du Trias.- Revue de Paléobiologie, Genève, vol. 14, no. 1 (1994), p. 49-84.
Granier B., Dias-Brito D., Bucur I.I. & Tibana P. (2013).- Brasiliporella, a new mid-Cretaceous dasycladacean genus: The earliest record of the Tribe Batophoreae.- Facies, Erlangen, vol. 59, p. 207-220.
Harvey W.H. (1857).- Synopsis of British sea-weeds, compiled from Professor Harvey's Phycologia Britannica.- Lovell Reeve, London, viii + 219 p.
Moreau J.-D., Baret L., Lafaurie G. & Chateau-Smith C. (2016).- Terrestrial plants and marine algae from the Late Jurassic lithographic limestone of the Causse Méjean (Lozère, southern France).- Bulletin de la Société Géologique de France, vol. 187, no. 2, p. 121-127.
Moreau J.-D., Vullo R., Charbonnier S., Jattiot R., Trincal V., Néraudeau D., Fara E., Baret L., Garassino A., Gand G. & Lafaurie G. (2023).- Konservat- Lagerstätten from the Upper Jurassic lithographic limestone of the Causse Méjean (Lozère, southern France): Palaeontological and palaeoenvironmental synthesis.- Geological Magazine, London, vol. 159, no. 5, 21 p.
Morellet J. & Ters M. (1952).- Deux Dasycladacées du Lias de Vendée.- Bulletin de la Société Géologique de France (6e Série), Paris, t. I, fasc. 8 (1951), p. 643-648.
Morellet L. & Morellet J. (1913).- Les Dasycladacées du Tertiaire parisien.- Mémoires de la Société Géologique de France, Paris, Mémoire no 47, 43 p. (III Pls.). URL: https://patrimoine.sorbonne-universite.fr/idurl/1/2890
Mu X. (1993).- Late Cretaceous palaeobiogeography of calcareous algae. In: Barattolo F., De Castro P. & Parente M. (eds.), Studies on fossil benthic algae.- Bollettino della Società Paleontologica Italiana, Modena, Special Volume 1, p. 333-344.
Pascher A. (1931).- Systematische Übersicht über die mit Flagellaten in Zusammenhang stehenden Algenreihen und Versuch einer Einreihung dieser Algenstämme in die Stämme des Pflanzenreiches.- Beihefte zum Botanischen Centralblatt, Dresden, Band XLVIII, p. 317-332.
Pia J. (1920).- Die Siphoneae verticellatae vom Karbon bis zur Kreide.- Abhandlungen der Zoologisch-botanischen Gesellschaft von Wien, Band XL, Heft 2, p. 1-263. DOI: 10.5962/bhl.title.109300
Pia J. (1922).- Einige Ergebnisse neuerer Untersuchungen über die Geschichte der Siphoneae verticillatae.- Zeitschrift für Induktive Abstammungs- und Vererbungslehre, Band 30, p. 63-98
Orbigny A. d' (1850).- Prodome de paléontologie stratigraphique universelle des animaux mollusques & rayonnés faisant suite au cours élémentaire de paléontologie et de géologie stratigraphiques. Premier volume.- Victor Masson, Paris, 427 p. URL: https://gallica.bnf.fr/ark:/12148/bpt6k9611265w
Pugaczewska H. (1971).- Jurassic Osteidae of Poland.- Acta Palaeontologica Polonica, Warsaw, vol. 16, no. 3, p. 195-311.
Quenstedt F.A. (1852).- Handbuch der Petrefaktenkunde.- H. Laupp, Tübingen, Text, 792 p.; Atlas, 62 p. DOI: 10.5962/bhl.title.15107
Roemer F.A. (1839).- Die Versteinerungen des Norddeutschen Oolithen-Gebirges. Ein Nachtrag.- Hahn, Hannover, 59 p. URL: https://www.biodiversitylibrary.org/page/50761092
Rychliński T., Gaździcki A. & Uchman A. (2018).- Dasycladacean alga Palaeodasycladus in the northern Tethys (West Carpathians, Poland) and its new palaeogeographic range during the Early Jurassic.- Swiss Journal of Geosciences, Bern, vol. 111, p. 305-315. DOI: 10.1007/s00015-018-0301-z
Saporta G. de (1891).- Plantes jurassiques. In: Paléontologie francaise ou description des fossiles de la France (2e série. – Végétaux), Tome IV.- Masson, Paris, 547 p.
Saporta G. de & Marion A.F. (1881).- Sur les génres Williamsonia Carruth. et Goniolina d'Orb.- Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, Paris, Tome 92e, no; 22, p. 1268-1270. URL: https://www.biodiversitylibrary.org/page/3672372
Schenk A. (1890).- Die fossilen Pflanzenreste. In: Schenk A. (ed.), Handbuch der Botanik, Band 4.- Eduard Trewendt, Breslau, 270 p. URL: https://goobi.tib.eu/viewer/!image/1663612013/18/-/
Schormann J. & Zawischa D. (1991).- Fossilien vom Langenberg bei Oker.- Arbeitskreis Paläontologie Hannover, Band 19, Heft 2, p. 37-52. URL: https://www.ap-h.de/download/1991_2.pdf
Seebach K. von (1864).- Der Hannoversche Jura.- Hertz, Berlin, 158 p.
Silva-Pineda A. (1977).- Goniolina geometrica (Chlorophyta, Dasycladaceae) de la Formacion San Ricardo (Jurasico superior) del Estado de Chiapas.- Universidad Nacional Autónoma de México, Instituto de Geologia, Revista, vol. 1, no. 1, p. 64-68. URL: https://rmcg.geociencias.unam.mx/index.php/rmcg/article/view/1444
Steinmann G. (1880).- Zur Kenntniss fossiler Kalkalgen (Siphoneen).- Neues Jahrbuch für Mineralogie, Geologie und Paläontologie (ser. II), Stuttgart, Jahrgang 1880, Band II, p. 130-140 (Pl. V). URL: https://www.biodiversitylibrary.org/page/44123670
Sturm H. & Brauckmann G. (1999).- Seltene und weniger bekannte Fossilien aus dem Malm bei Hildesheim.- Arbeitskreis Paläontologie Hannover, Band 27, Heft 2, p. 53-65. URL: https://ap-h.de/download/1999_2.pdf
Taherpour Khalil Abad M., Schlagintweit F., Vaziri S.H., Aryaei A.A. & Ashouri A.R. (2013).- Balkhania balkhanica Mamontova, 1966 (benthic foraminifera) and Kopetdagaria sphaerica Maslov, 1960 (dasycladalean alga) from the Lower Cretaceous Tirgan Formation of the Kopet Dagh mountain range (NE Iran) and their paleobiogeographic significance.- Facies, Erlangen, vol. 59, p. 267-285
Valet G. (1969).- Contribution à l'étude des Dasycladales. 2- Cytologie et reproduction, 3- Révision systématique.- Nova Hedwigia, Lehre, Band XVII, p. 551-644.
Wittler F.A. (2000).- Ein mutmaßlicher Nachweis der Dasycladacee Goniolina hexagona d'Orbigny 1850 aus der Kreide (Oberkreide, Coniac) von Gelsenkirchen / NW Deutschland.- Arbeitskreis Paläontologie Hannover, Band 28, Heft 4, p. 111-119. URL: https://ap-h.de/download/2000_4.pdf
Wray J.L. (1977).- Calcareous algae.- Development in Palaeontology and Stratigraphy, vol. 4, 185 p.
Yilmaz I.O. (1999).- Taxonomic and palaeogeographic approaches to the dasyclad algae in the Upper Jurassic (Kimmeridgian)-Upper Cretaceous (Cenomanian) peritidal carbonates of the Fele (Yassibel) area (Western Taurides, Turkey).- Turkish Journal of Earth Sciences, Ankara, vol. 8, no. 2-3, p. 81-101. URL: https://journals.tubitak.gov.tr/earth/vol8/iss2/1
Zanardini G. (1878).- Phyceae papuanae novae vel minus cognitae a cl. O. Beccari in Itinere ad Novam Guineam annis 1872-75 collectae.- Nuovo Giornale Botanico Italiano, Firenze, vol. X, p. 34-40. URL: https://digitale-sammlungen.de/view/bsb11378393?page=38%2C39