Carnets de Géologie / Notebooks on Geology: Article 2005/04 (CG2005_A04)

Click here to close the window!

Contents

[Introduction] [I - The Bedoulian historical stratotype]
[II - Geochemical results] [III - Interpretation and discussion]
[IV - The response of the planktonic and benthic biosphere of the basin]
[V - Stratigraphic implications] [VI - Origin and causes of hydrate gas destabilization]
[Conclusion] [Bibliographic references] and ... [Figures]


Early Aptian δ13C and manganese anomalies
from the historical Cassis-La Bédoule stratotype sections (S.E. France):
relationship with a methane hydrate dissociation event
and stratigraphic implications

Maurice Renard

Université P. et M. Curie, Département de Géologie Sédimentaire (J.E. Biominéralisations et Paléoenvironnements), Case 116, 4 pl. Jussieu, 75252 Paris Cédex 05 (France)

Marc de Rafélis

Université P. et M. Curie, Département de Géologie Sédimentaire (J.E. Biominéralisations et Paléoenvironnements), Case 116, 4 pl. Jussieu, 75252 Paris Cédex 05 (France)

Laurent Emmanuel

Université P. et M. Curie, Département de Géologie Sédimentaire (J.E. Biominéralisations et Paléoenvironnements), Case 116, 4 pl. Jussieu, 75252 Paris Cédex 05 (France)

Michel Moullade

Université de Provence, Centre de Sédimentologie & Paléontologie, CNRS UMR 6019, Centre Saint-Charles, 13331 Marseille Cedex 3 & Museum d'Histoire naturelle de Nice, 60 bd Risso, 06300 Nice (France)

Jean-Pierre Masse

Université de Provence, Centre de Sédimentologie & Paléontologie, CNRS UMR 6019, Centre Saint-Charles, 13331 Marseille Cedex 3 (France)

Wolfgang Kuhnt

Christian-Albrechts-Universität, Institut und Museum für Geologie und Paläontologie, Olshausenstraße 40, D-24118 Kiel, F.R. (Germany)

Jim A. Bergen

University of North Carolina, Dept of Geological Sciences Rm228, Mitchell Hall, Chapel Hill, NC 27599-3315 (U.S.A.)

Guy Tronchetti

Université de Provence, Centre de Sédimentologie & Paléontologie, CNRS UMR 6019, Centre Saint-Charles, 13331 Marseille Cedex 3 (France)
Manuscript online since November 25, 2005

Click here to download the PDF version!

Abstract

Comparison of oxygen and carbon isotope and manganese evolution curves in bulk carbonate from the historical Bedoulian stratotype (Cassis-La Bédoule area, Provence, France) reveals an important geochemical event (negative δ13C and high Mn content) located within the D. deshayesi ammonite Zone and at the base of the R. hambrowi ammonite Subzone. This worldwide event, which can be observed in environments ranging from the fluvial to the pelagic realm (Selli/Goguel level), seems to be related to methane hydrate destabilization. Scenarios for manganese, carbon and oxygen evolutions are proposed for early Bedoulian oxic conditions and for dysoxic/anoxic conditions related to methane hydrate destabilization at the early/late Bedoulian transition. The impacts of this global event on the biosphere (nannoconid crisis) and its stratigraphic implications are considered. Comparison of geochemical and biostratigraphical data from the Cassis-La Bédoule stratotype with that of the Cismon-Apticore reference borehole shows that the La Bedoule sequence records geochemical evolution during the Goguel/Selli Event in more detail than that of any other previously published section.

Key Words

Lower Aptian; Bedoulian; carbon and oxygen isotopes; manganese; methane hydrates; nannoconid crisis; Selli and Goguel levels.

Citation

Renard M., Rafélis M. de, Emmanuel L., Moullade M., Masse J.-P., Kuhnt W., Bergen J.A. & Tronchetti G. (2005).- Early Aptian δ13C and manganese anomalies from the historical Cassis-La Bédoule stratotype sections (S.E. France): relationship with a methane hydrate dissociation event and stratigraphic implications.- Carnets de Géologie / Notebooks on Geology, Brest, Article 2005/04 (CG2005_A04)

Résumé

Anomalies géochimiques (δ13C et manganèse) dans l'Aptien inférieur du stratotype historique de Cassis-La Bédoule (S.E. France) : relation avec un événement de dissociation d'hydrates de méthane et implications stratigraphiques.- La comparaison des courbes isotopiques (carbone et oxygène) et des teneurs en manganèse de la série du stratotype historique du Bédoulien (coupes de Cassis-La Bédoule, Provence, France) met en évidence des anomalies géochimiques (accident négatif du δ13C et pic des teneurs en Mn) se développant dans les zones d'ammonites à D. deshayesi et à R. hambrowi. Cet événement, d'occurrence mondiale, qui s'enregistre dans tous les environnements sédimentaires (niveau Selli/Goguel), parait lié à une période de déstabilisation des hydrates de méthane. Deux modèles de comportement du manganèse et des isotopes du carbone et de l'oxygène sont proposés. Le premier correspond aux conditions oxiques régnant au début du Bédoulien, le second aux conditions dysoxiques/anoxiques liées à la dissociation des hydrates de méthane au cours de la transition Bédoulien inférieur/Bédoulien supérieur. L'impact sur la biosphère (crises des nannoconidés) et les implications stratigraphiques sont discutés. La comparaison des données biostratigraphiques et géochimiques issues de la région stratotypique et du sondage de référence de Cismon-Apticore (Italie) montre que la série de la Bédoule enregistre les évolutions géochimiques au cours de l'événement Selli/Goguel d'une façon plus complète que les autres coupes précédemment publiées.

Mots-Clefs

Aptien inférieur ; Bédoulien ; isotopes du carbone et de l'oxygène ; hydrates de méthane ; crise des nannoconidés ; niveau Selli/Goguel.

Back to Top!

Introduction

A revision (Moullade et alii, 1998a) of the historical stratotype of the lower Aptian (Bedoulian) has provided the opportunity for a multidisciplinary review of various sections in the Cassis-La Bédoule area (Provence, France: Fig. 1A ). This review includes a study of stable oxygen and carbon isotopes (Kuhnt et alii, 1998; Moullade et alii, 1998b) and trace elements (Renard & Rafélis, 1998) in the bulk carbonate. Whereas the isotope study concentrated on the positive excursion of δ13C subsequent to the anoxic episode, the analysis of trace elements focused on their relationship with the sequence stratigraphy of the stratotype.

The aim of this new work is a comparison of the two geochemical approaches and the integration of these data into those already available concerning the long term geochemical evolution of the Lower Cretaceous of the Vocontian Trough (Angles and Vergons sections, Alpes de Haute Provence: Emmanuel, 1993 and new data). This comparison reveals an important geochemical break during the lower Aptian within the D. deshayesi ammonite Zone and at the base of the R. hambrowi ammonite Subzone. These geochemical anomalies may be related to methane hydrate destabilization and this study attempts to understand δ13C and Mn behaviours during such an event and to underline the importance of geochemical anomalies of this kind as a stratigraphic tool.

During Mesozoic and Cenozoic times the long-term evolution of carbon isotope ratios presents lengthy (several million years) positive excursions that increased gradually throughout their term (Letolle & Renard, 1980; Renard, 1985, 1986; Shackleton & Hall, 1990; Strauss & Peters-Kottig, 2003; Pearce et alii, 2005). During these extended periods, heavy carbon isotope ratios are often associated with large amplitude short term (hundred of thousands of years) δ13C negative shifts.

These lengthy positive excursions were rather soon understood and interpreted as being related to an increase in the production of organic matter together with a rise in the percentage fossilized because they coincide with oceanic anoxic events (OAE: Jenkyns, 1980). As organic matter preferentially incorporates carbon-12 during photosynthesis, this isotope is trapped in larger amounts during periods of increased productivity, in particular when a greater percentage of the organic matter produced is fossilized. Oceanic CO2 is then enriched in carbon-13 and the δ13C of the carbonates rises during this period. The effects of volcanism (Weissert & Erba, 2004) and those of continental weathering (Cohen et alii, 2004) have been evaluated.

The shorter negative shifts associated with the long term trend are classically used in chemostratigraphy (Scholle & Arthur, 1980; Zachos & Arthur, 1986; Renard, 1986; Weissert, 1989; Weissert & Channell, 1989; Shackleton & Hall, 1990; Corfield et alii, 1991; Magaritz, 1991; Jenkyns et alii, 1994 & 2002; Bartolini et alii, 1996; Renard et alii, 1997; Rey & Delgado, 2002) because they are short-lived and synchronous phenomena. However their causes were in dispute for a considerable time: temporary oxygenation of the environment with consequent oxidation of the excess organic matter produced; sharp decrease in the quantity of organic matter produced. Discovery and recognition in many localities of BSR (bottom simulating reflectors: Stoll et alii, 1972; Dillon et alii, 1983; Tinivella & Lodolo, 2000) attesting to the widespread occurrence of methane hydrates in marine sediments has led to another interpretation (Field & Kvenvolden, 1985; Gornitz & Fung, 1994). As these complexes are stable only over a given range of pressure and temperature (Field & Kvenvolden, 1985; Sloan, 1990; Dickens et alii, 1995), the periodic destabilization of these gas hydrates (formed thermogenically or more probably biogenically by methane-producing bacteria from organic matter in sediments: Paull et alii, 1994) causes the sudden release of methane into the ocean (destabilization of 1 m3 of methane hydrate produces on the order of 140 m3 of methane gas with very low δ13C (-60‰) values (Dickens et alii, 1995). This methane is then oxidized to form CO2 (possibly forcing the environment towards anoxia, see below), which in turn influences the isotopic composition of oceanic carbonates. The more methane released the more negative the carbonate δ13C.

The first convincing evidence that such a process had occurred in a fossil sedimentary sequence was found with respect to the negative shift occurring at the Paleocene/Eocene boundary (Dickens et alii, 1995; Dickens, 2001), the release of methane having been caused by bottom water warming (Kennett & Stott, 1995; Schmitz et alii, 1997; Le Callonnec, 1998). There is much more evidence suggesting that such events occurred at various widely disparate times (Weissert, 2000): Proterozoic (Kennedy et alii, 2001), Toarcian (Emmanuel, 1993; Jenkyns & Clayton, 1997; Schouten et alii, 2000; Hesselbo et alii, 2000; Beerling et alii, 2002), Mid-Late Oxfordian (Padden et alii, 2001; Wierzbowski, 2002). In 1994, Jahren & Arens were the first to report the possibility of a methane event during the Aptian OAE (AGU, Abstract) but their proposal was published only later (Jahren et alii, 2001; Jahren, 2002; Beerling et alii, 2002). We opine here that the negative excursion of δ13C recorded in the lower part of the upper Bedoulian in the historical stratotype section may be related to such an event because of its large amplitude (more than 2 ‰), its strong occurrence and short duration (D. deshayesi Zone and base of the R. hambrowi Subzone), its synchronism with other geochemical (Mn, δ18O) and biological anomalies and its global character.

I - The Bedoulian historical stratotype

The regional and palaeogeographic setting of the stratotype (Fig. 1B ) is that of an intrashelf basin - the South Provence Trough - that formed in the Urgonian Platform during late Barremian times (Masse et alii, 1998). It was isolated from the Vocontian Basin to the north by the North Provence Platform (Monts de Vaucluse - Mont Ventoux) and bounded to the southeast by the South Provence Platform (Mont Faron). Although quite restricted in extent initially, this trough extended westward during Lower Aptian times to join the North Pyrenean Basin of the 'Deshayesites Marls' (Masse et alii, 1998). The biozonations used in this work (Fig. 2 ) are those of Ropolo et alii (1998) for ammonites, Moullade et alii (1998e) for foraminifers and Bergen (1998) for nannofossils. As described by Moullade et alii (1998c-d) and Masse (1998) the stratotype presents three members (Fig. 2 ):

The distinction of these members is of practical value in the field but does not accurately reflect the CaCO3 content which always remains high (mostly 80-95%: Masse, 1998). The distinction between marl and limestone lithofacies is therefore more closely associated with induration than carbonate content.

II - Geochemical results

II.1 - Methods

Samples were washed in distilled water, crushed, then dissolved in acetic acid (1N). Trace elements were analysed by atomic absorption (Hitachi Z8100 Zeeman spectrometer) using the method described by Renard & Blanc (1971; 1972) and Richebois (1990). Analytical accuracy is around 5%. Stable isotopes were measured with a Finnigan MAT 251 mass spectrometer coupled to a Carbo-Kiel device for automated CO2 preparation from carbonate samples. Reactions were produced by adding acid to individual samples. The system is accurate to ±0.05‰ for carbon isotopes and ±0.08‰ for oxygen isotopes.

II.2 - Isotope data

II.2a - Carbon isotope ratio

Overall, the carbon isotope ratio of carbonates is high in the stratotype section (Fig. 2 ), rising from 2‰ at the top of the Barremian to around 4.5‰ in the uppermost Bedoulian (4.66‰ in bed 171). This general trend is interrupted by a brief negative shift (0.70‰ in bed 45, top of the Barremian) and a longer negative excursion at the base of upper Bedoulian between beds 129 and 157 (base of the D. deshayesi Zone and the R. hambrowi Subzone). This excursion reaches its minimum values between beds 136 and 146 where the δ13C values scarcely overpass 1‰.

II.2b - Oxygen isotope ratio

Kuhnt et alii (1998) have already discussed the quality of the isotope signals recorded by bulk carbonates in this series by showing the slight effect of late burial diagenesis. However, the high variability of oxygen isotope ratios (on the order of 1‰) reported for nearby samples (Fig. 2 ) suggests that early diagenesis may be involved in bed formation and in the alternating pattern of the outcrop. Although their great variability obscures the signal to a degree, a general pattern can be observed for the oxygen isotope ratios (Fig. 2 ) that shows two negative trends. In the first one (top of the Barremian - lower Bedoulian), ratios decrease from values ranging between -0.7‰ -1.5‰ to values around -2,4‰ (bed 128). Furthemore bed 45 (site of the negative δ13C shift) also records a negative δ18O shift (-2.94‰).

Above the unconformity of bed 129, δ18O increases at the base of the upper Bedoulian (D. deshayesi Zone). Then a second negative trend occurs in the upper Bedoulian with values falling from around -1.6‰ (bed 136) to less than -2.4‰ (beds 170 and 174). So the negative excursion of δ13C in the D. deshayesi Zone corresponds rather closely with an increase of δ18O values (ranging from -1.6 to-2‰).

II.3 - Manganese content

The manganese concentration of carbonate fluctuates considerably: from less than 50 ppm at the top of the Barremian to more than 500 ppm over the middle part of the upper Bedoulian (Fig. 2 ). This pattern is characterized by a relatively large rise throughout the upper Barremian (bed 38, [Mn] = 31 ppm) and lowest Bedoulian (bed 73, [Mn] = 216 ppm). During the lower Bedoulian and in the lower part of the upper Bedoulian Mn values level out at around 200 ppm. These observations are the basis for a proposed 3rd order geochemical sequence pattern (Renard & Rafélis, 1998), according to the model of Emmanuel (1993) and Emmanuel & Renard (1993), supplemented by Rafélis (2000) and Rafélis et alii (2000).

The lower part of the upper Bedoulian (D. deshayesi and R. hambrowi zones) is characterized by very high values rising suddenly above the otherwise fairly level curve. There are two Mn-rich intervals: beds 136-137 (384 ≤ [Mn] ≤ 484 ppm) and beds 144-150 (450 ≤ [Mn] ≤ 529 ppm). The second part of the upper Bedoulian is characterized by low values (108 ≤ [Mn] ≤ 212 ppm). The sudden decrease in Mn content at the end of the Mn-rich zone (bed 150, [Mn] = 450 ppm; bed 151, [Mn] = 212 ppm) suggests either a hiatus or an intense sedimentary condensation at this level.

III - Interpretation and discussion

The lower part of the upper Bedoulian (D. deshayesi and base of the R. hambrowi ammonite zones, B. blowi and base of the S. cabri foraminifer zones, nannozone N6b) seems to be the site of substantial geochemical anomalies: a negative excursion of the carbon isotope ratios, two positive excursions of carbonate Mn contents and in a less obvious way an increase of δ18O values.

III.1 - Carbon isotope ratio

Juxtaposition of the carbon isotope data from the La Bédoule stratotype with data from the Vocontian area (Berriasian to Barremian in the Angles and Vergons sections, Emmanuel, 1993; Fig. 3 ) shows that high δ13C values at the Bedoulian/Gargasian transition correspond to the end of a long-term positive trend that began in the middle Hauterivian. The negative excursion at the base of the upper Bedoulian temporarily interrupts this trend. The δ13C negative shifts observed at the Barremian-Aptian transition in the Angles section are not of the same order of magnitude as those recorded in the La Bédoule stratotype, but they confirm the occurrence of a sedimentary gap at bed 45, which may reflect a major drowning phase (Masse & Machhour, 1998).

During Hauterivian to Gargasian (middle Aptian) times the following series of processes could be detected (Fig. 3 ). A phase of increased organic productivity developed gradually during the mid-Hauterivian (δ13C ≈ 1‰) and increased with fluctuations throughout the early Barremian (δ13C ≈ 1.5‰) and late Barremian (δ13C ≈ 2.25‰). The Barremian-Aptian boundary is marked by a decrease in the phenomenon (δ13C ≈ 1.75‰). The record of this decrease is exaggerated in the Cassis stratotype (δ13C ≈ 0.70‰) because of sedimentary gaps in the late Barremian associated with a regional drowning phase (Masse & Machhour, 1998). However, it cannot be completely ruled out that a first regional methane hydrate release occurred at that time. The oxidation of CH4 into CO2 would decrease the availability of oxygen and thus allow increased fossilization of organic matter (2% ≤ TOC ≤ 10%, in beds 41-49, Masse & Machhour, 1998). The increase in organic productivity continued into the early Bedoulian and is recorded both in the Angles section (δ13C ≈ 2.5‰) and the Cassis section. The phenomenon is more marked in the stratotypic series (δ13C ≈ 3‰ in the D. tuarkyricus Zone and ≈ 3.4‰ at the base of the D. weissi Zone). This peak corresponds to the first positive excursion reported by Kuhnt et alii (1998).

δ13C decreases progressively at the top of the D. weissi Zone and then abruptly at the transition from the limestone to the marl-limestone member (lower Bedoulian/upper Bedoulian, D. weissi Zone / D. deshayesi Zone). The methane hydrate release may have begun at bed 114 in the D. weissi Zone or more probably at bed 129 coincident with the D. weissi / D. deshayesi boundary (the first part of the negative trend is considered to be a "normal" fluctuation in productivity). Methane hydrate release leads to very low carbon isotope ratios in the carbonates with two minima in the D. deshayesi Zone: at the top of bed 136 (δ13C = 1.12‰) and at the base of bed 146 (δ13C = 1.23‰; bottom of the S. cabri foraminifer Zone, top of the D. deshayesi ammonite Zone). The phenomenon ends at the base of the R. hambrowi ammonite Subzone (lower part of the S. cabri Zone) between beds 150 (δ13C = 2.30‰) and 151 (δ13C = 3.21‰). The second positive excursion (identified by Kuhnt et alii, 1998) corresponds to a renewed increase in the productivity and fossilization of organic matter during the late Bedoulian (δ13C = 4‰ in bed 159 at the top of the R. hambrowi Subzone and = 4.66‰ in bed 171 in the T. bowerbanki Zone).

By comparison between isotope data from the Cassis-La Bédoule section (Fig. 4 ) with those from the Vocontian domain (Serre Chaïtieu: Weissert & Bréheret, 1991), Southern Alps (Cismon: Weissert & Lini, 1991), Umbria-Marche Basin (Corgo Cerbera: Erbacher & Thurow, 1997) and Pacific Ocean (Guyot du Resolution: Jenkyns, 1995), Kuhnt et alii (1998) show that the positive trend of δ13C in the late Bedoulian is a worldwide phenomenon recorded in all sections studied. The negative excursion of the D. deshayesi Zone is more difficult to identify elsewhere because in many Tethyan sections gaps at the base of the Aptian (Delanoy, 1996) or major slumps (Umbria-Marche Basin: Cresta et alii, 1989; Hadji, 1991) mask the initial phase of δ13C evolution (first positive excursion of Kuhnt et alii, 1998). So the isotopic minimum in these sections is taken to be the δ13C base level of the Aptian. However, more recent isotope data on the Cismon outcrops (Menegatti et alii, 1998) and above all the Apticore borehole in the same region (Erba et alii, 1999; Larson & Erba, 1999) show a pattern identical to that recorded in the historical stratotype, i.e. a negative excursion of 1-2‰ at the Selli level (Fig. 5 ). However, with regard to fine-scale correlation a problem still exists because the negative excursion, much more abrupt at its base, has but a single minimum in the lower part of the S. cabri foraminifer Zone (upper part of nannozone NC6) in the Cismon Apticore borehole (Fig. 5 ; Larson & Erba, 1999) and at the top of the B. blowi Zone in the outcrops of the area (Menegatti et alii, 1998). The causes and the stratigraphic implications of this apparent diachronism between the Cismon and La Bédoule sections are discussed below. Menegatti et alii (1998) also indicate a single event at the top of the B. blowi Zone at Rotter Sattel (Swiss Prealps) where the isotope curve displays sudden breaks suggesting gaps in sedimentation. However, the La Bédoule section displays a much more extensive excursion, with two minima. The earlier one is located in the B. blowi Zone and the second at the base of the S. cabri Zone (zone NC6b). Data from the Hybla Formation in Sicily show that the equivalent of the Selli level records a negative δ13C excursion that there too extends from the top of the B. blowi Zone to the base of the S. cabri Zone (Bellanca et alii, 2002). Various studies show that the negative excursion of δ13C is clearly recorded in shallow shoal series in the Pacific (Fig. 4 ) and carbonate platform such as the Sierra Madre (Mexico: Bralower et alii, 1999) or the Urgonian Platform (Vaucluse, France: Masse et alii, 1999) suggesting a general oceanic phenomenon. Moreover, Jahren et alii (2001) and Jahren (2002) recorded a δ13C negative accident of this type in the total organic matter, in the vitrinite and in the Aptian sediment cuticles of estuarine and coastal facies (Andes, Colombia). Numerous authors have described a similar record in terrestrial organic matter from the Isle of Wight (southern Britain: Gröcke et alii, 1999), from northern Japan marine sediments (Ando et alii, 2002), from Algarve basin costal series (Portugal: Heimhofer et alii, 2003). These studies clearly show that all carbon reservoirs, both marine and continental, were almost synchronously disturbed by the event, which is consistent with the hypothesis of an important gas hydrate dissociation.

III.2 - Manganese content of the carbonates

The oceanic geochemistry of manganese is characterized by the prevalence of its association with a hydrothermal source (Bostrom & Peterson, 1969; Bender et alii, 1970; Lyle, 1976; Klinkhammer, 1980; Klinkhammer & Bender, 1980; Thomson et alii, 1986; Von Damm, 1995; Corbin et alii, 2000). However, the interpretation of the significance of the Mn content of pelagic carbonates is complex for this element can be extracted from seawater by either of two processes:

(i) Direct precipitation of MnO2 as micronodules within carbonate sediments. These micronodules are soluble in part by acid that may thus introduce bias in estimates of original Mn carbonate content (Emmanuel, 1993; Rafélis, 2000).

(ii) Co-precipitation of Mn2+ in the calcite lattice (Pingitore et alii, 1988):

[Mn/Ca]crystal = kMncalcite [Mn/Ca]seawater

The first process may be important in oxidizing environments while the second is active in reducing environments (Michard, 1969). However, studies of manganese speciation in pelagic carbonates either by cathodoluminescence (Rafélis et alii, 2000) or by ESR (Rafélis, 2000) show that in most cases the Mn content of pelagic carbonates is due to Mn2+ co-precipitated in the calcite lattice.

Following pioneer works of Pomerol (1976, 1984), Renard & Letolle (1983), Accarie et alii (1989, 1993) and Pratt et alii (1991) associating manganese fluctuations with sea-level variations, Emmanuel (1993) and Emmanuel & Renard (1993) have proposed the use of the Mn content of pelagic carbonates as a geochemical tool to characterize 3rd order sequences (sensu Vail et alii, 1977). Lowstand systems tracts are characterized by a low and relatively stable Mn content. Transgressive episodes correspond to an increase of Mn content that peaks at the level of the maximum flooding surface. Highstand systems tracts display Mn values that decrease to a minimum at the sequence boundary. This model, first developed for the Tethyan Lower Cretaceous, has now been found applicable in the Middle and Upper Jurassic (Corbin, 1994; Corbin et alii, 2000; Rafélis et alii, 2000) and in the Upper Cretaceous (Barchi, 1995; Jarvis & Murphy, 1999).

The La Bédoule stratotypic section was divided into sequences based on variations in manganese content by Renard & Rafélis (1998). This proposed tectono-eustatic interpretation is problematic in the lower portion of the upper Bedoulian where the correlation of manganese peaks with the negative δ13C excursion seems to indicate that another phenomenon is superimposed on the hydrothermal/eustatic control. Figure 6 illustrates the geochemical specificity of the D. deshayesi Zone and the base of the R. hambrowi Subzone (beds 136, 137, 144, 146, 147 and 150). As oceanic hydrothermal events do not generate lighter carbon (only -7‰), a high Mn content cannot be linked straightforwardly to an increase in hydrothermal input during a more active phase of ridge spreading. This implies that an additional source of Mn must be related in some way to the event that caused the negative δ13C excursion.

The following scenario can be envisaged (Fig. 7A ). The increased productivity of organic remains that began in the mid-Hauterivian (Fig. 3 ) continued during the early Bedoulian. A large proportion of the produced organic matter escaped oxidation, was fossilized and consequently trapped a large quantity of carbon-12, thus inducing a first positive excursion of δ13C (Kuhnt et alii, 1998). The decomposition of organic matter did not consume enough oxygen to cause anoxia in the environment, so the redox front is located in the sediments at a depth of a few centimetres or decimetres. The concentration of dissolved manganese in seawater (Mn2+) fluctuated with the hydrothermal activity at the ocean ridges with some of the element being oxidized as Mn4+ and precipitated as MnO2 particles. However, most of the Mn2+ available co-precipitated with the calcite synthesized by pelagic carbonate producers. In the course of sedimentation, the MnO2 particles are trapped below the redox front where a relatively small proportion is reduced, thereby releasing Mn2+ (diffused in the sediment) which is returned to the ocean system and incorporated in the pelagic calcites (Burdige, 1993).

Immediately before the carbonate platform drowning phase at the onset of the late Bedoulian (D. deshayesi Zone, Fig. 7B ; Masse, 1998), by a mechanism not yet precisely determined (see below), gas hydrate was destabilized, releasing methane with a very low carbon isotope ratio (-60‰). In seawater, this methane was oxidized to form CO2 that ultimately was used to produce carbonates with low carbon isotope ratios. As the oxidation of methane required much oxygen, the seafloor became dysoxic or anoxic. The redox front rose to the water/sediment interface or even higher in the water column. This caused most MnO2 particles to be reduced thus releasing a large quantity of Mn2+ which was then integrated into the lattice of the produced pelagic carbonates. The two processes are out of phase (Fig. 2 ): the negative excursion of δ13C marking the release of CH4 began at the base of the late Bedoulian (D. deshayesi Zone) at bed 129 whereas the manganese peak resulting from the lower oxygenation of the environment did not appear until bed 136. In the same manner of succession, the δ13C event ends at bed 150 before the Mn event took place (bed 151c). These events completed, organic productivity continued to rise as a preliminary to the second positive δ13C excursion reported by Kuhnt et alii (1998).

IV - The response of the planktonic and benthic biosphere of the basin

An early Aptian nannoconid crisis (chron M0) associated with oceanic volcanic events was described by Erba (1994) in the Italian series. This crisis took place below the base of the Selli level (Coccioni et alii, 1987) in the lower part of the S. cabri foraminifer level and the upper part of nannozone NC6. In the Cassis-La Bédoule stratotype the effects of this crisis are not obvious. However, Bergen (1998) reported two periods of decrease in the abundance of nannoconids (Fig. 5 ). The first occurs within the Conusphaera mexicana Subzone (NC6A, beds 92-106, D. tuarkyricus / P. kuznetsovae Zone) and the second in the Grantarhabdus coronadventis Subzone (NC6B, beds 133-143, D. deshayesi / B. blowi Zone). New data from the Cismon region (Italy: Erba et alii, 1999; Larson & Erba, 1999, Fig. 5 ) help to demonstrate the pattern of the crisis: fluctuation in the nannoconid population began with a severe depletion at the base of zone NC6; a partial recovery took place thereafter, but reached a minimum in the upper third of this zone at the base of the Selli level, where the δ13C values are lowest. A similar pattern is observed at Cassis-La Bédoule although the events are spaced farther apart and interrupted because of the high rates of sedimentation in the stratotype area. The second event described by Bergen (1998) coincides with the minimum of the negative δ13C excursion and thus appears to correlate, in part at least, with the "nannoconid crisis" reported by Erba (1994) at the base of the Selli level. In the stratotype foraminifers too have been disturbed at the time of the negative δ13C excursion (Moullade et alii, 1998e; Fig. 5 ) owing to the reduced oxygenation of the environment. Because of its stratigraphic position in the R. hambrowi Subzone (beds 153-157), this crisis was correlated with the Selli level (Moullade et alii, 1998e). These bioevents, involving the abundance and diversity of - both planktonic and benthic - foraminifers and nannofossils, were contemporaneous with the end of the negative δ13C excursion and with the Mn-rich period (nannofossils) and consequently with the back to "normal" phase of the oceanic environment (foraminifers). They are consistent with a period of oxygen depletion subsequent to the release of gas hydrates.

V - Stratigraphic implications

V.1 - Occurrence of sedimentary gaps in the B. blowi Zone in reference sections and in boreholes of the Cismon area (Italy)

A detailed stratigraphy of the Selli level (equivalent to the Goguel level of the Vocontian Basin: Bréheret, 1988), which represents the major anoxic peak OAE1a (Arthur et alii, 1990), may be determined by comparing the record of the evolution of the δ13C content at Cismon (Italy) with that at La Bédoule. As Italian stratigraphers do not use the same reference markers as their French counterparts to define the base (H. irregularis) and top (E. floralis) of the Aptian stage, the stratigraphy of Cismon has been reinterpreted using these reference markers (Fig. 5 ).

The first thing to keep in mind is the enormous difference in sedimentation rates. The Selli level (1% ≤ TOC ≤ 5%) at Cismon is some 3.5 m thick, while the negative δ13C excursion occupies 1.5 to 3 m (depending on the boundaries ascribed to it) at the base of the S. cabri Zone. The Selli level starts at the isotopic minimum and develops throughout the rise in the carbon isotope ratio. At La Bédoule, the negative δ13C excursion occupies some 35-38 m, that is the entire B. blowi Zone and the base of the S. cabri Zone. The equivalent to the Selli/Goguel level (beds 153-157) suggested by Moullade et alii (1998e) on the basis of a strongly decreasing foraminiferal diversity extends more than 5 m into the S. cabri Zone. This uppermost level corresponds only to the very end of the rise in the δ13C curve. Comparison with fluctuations in isotope values recorded at Cismon necessitates setting the base of the equivalent of the Selli/Goguel level lower down, at least to bed 146 and occupying 8-10 m at the base of the S. cabri Zone in La Bédoule section. This interpretation is consistent with the occurrence of black shale facies in the sequence from beds 151c to 157c (camping section: Moullade et alii, 1998e). At Cismon, the nannoconid crisis (Erba, 1994) is coeval with the decrease in δ13C and with the minimum (base of the S. cabri Zone); it extends over one or two metres of sediment. At La Bédoule, the second phase of nannoconid depletion reported by Bergen (1998), which may be the equivalent of the Erba nannoconid crisis, occupies 16-17 m at the top of the B. blowi Zone.

The only way to make these data consistent is to postulate the existence of a hiatus in sedimentation or an extreme condensation of the B. blowi Zone at Cismon (Fig. 5 ). The isotopic minimum recorded at Cismon (at the base of the S. cabri Zone) then is equivalent to the second negative event at La Bédoule (bed 146, base of the S. cabri Zone) or, considering the absolute values of δ13C (Cismon 2‰, La Bédoule 1.23‰), might be placed at the base of the rising phase of the isotope curve. The drastic decrease in isotope values at Cismon appears to be indicative of an important hiatus (most of the B. blowi Zone) at this level, which would mask the first part of the negative excursion recorded at La Bédoule at the top of the B. blowi Zone. The Erba's nannoconid crisis would then correspond to a condensation of the second event described by Bergen (1998) at La Bédoule.

On the other hand it seems likely that there is a minor gap in sedimentation at the base of the B. blowi Zone in the stratotype sequence at bed 129. This unconformity (expressed in the transition from the limestone to the marl-limestone member) is coincident with the largest geochemical break in the series (Renard & Rafélis, 1998). It can be correlated with the intra-Urgonian discontinuity U2/U3 of the Monts de Vaucluse, an event that has also been identified in the northern Sub-Alpine domain (Masse, 1998). In Provence, this tectonically-controlled event (Masse, 1994) was followed by a substantial drowning phase. Renard & Rafélis (1998) also interpret bed 129 as a major transgressive surface. This sedimentary gap, already suspected by Bergen (1998) from nannofossil assemblages, is the result of a two-stage phenomenon: an initial regressive impulse of tectonic origin followed by a tectono-eustatic major drowning phase.

V.2 - Implications for the use of manganese fluctuations as a tool in sequence stratigraphy.

Detailed study of the La Bédoule stratotype reveals a phenomenon already suspected by Emmanuel (1993) and Rafélis et alii (2000), namely that Mn peaks can be caused during anoxic periods by phenomena not directly related to eustacy. Therefore, care should be taken when using the Mn content of carbonates as a tool for sequence stratigraphy during anoxic periods, in particular by searching for correlations between Mn peaks and negative δ13C excursions. So the sequences proposed in the B. blowi and S. cabri zones (Renard et alii, 1998) and in particular the interpretation of level 146 as a maximum flooding surface of the Aptian 3 sequence should be topics for additional discussion.

VI - Origin and causes of hydrate gas destabilization

We have already indicated that methane hydrates trapped in sediments are stable only over a relatively narrow range of temperatures and pressures. As regards the Palaeocene/Eocene boundary event, warming of bottom water at mid and high latitudes (attested by benthic foraminifers and stable oxygen isotopes) appears to have triggered the release of methane gas. For the Aptian event, it is difficult to invoke a thermal trigger of this type as there was relatively little disruption in the benthic foraminifer community. Although differential diagenesis could bias bulk carbonate δ18O, oxygen isotope data could shed light on this problem. δ18O evolution indicates surface water warming in the early Bedoulian (of the order of 3° C, Kuhnt et alii, 1998, fig. 1) but this trend was progressive. In addition, during the period corresponding to the carbon isotope excursion, oxygen isotopes display a positive trend reflecting either a cooling (2° C, Kuhnt et alii, 1998) or a change in the isotope ratio of seawater because of the fluids released during the hydrate destabilization.

Jahren (2002) attempted to interpret the negative δ13C event of the Aptian as the consequence of the late Hauterivian superplume development (Larson, 1991a-b). During the Aptian and Albian, this plume brought about the formation of the Kerguelen Islands and of the Ontong-Java oceanic volcanic province, along with the emergence of numerous seamounts and deformation of the circum-Pacific rim (Vaughan, 1995). Models of epirogenesis of the ocean floor related to this superplume (Jahren, 2002) suggest that through reduction of hydrostatic pressure a quantity of methane may have been released compatible with the amplitude of the negative excursion in the Bedoulian. Models of epirogenesis of the ocean floor related to this superplume (Jahren, 2002) suggest that through reduction of hydrostatic pressure a quantity of methane may have been released, which is compatible with the amplitude of the negative excursion of the Bedoulian. However, Jahren acknowledges that such a process is lengthy and therefore is incompatible with the brief negative excursion reported. Against this hypothesis too is the fact that during the Hauterivian-Aptian the long-term pattern of the carbon isotope ratio of pelagic carbonates (Fig. 1 ) is the reverse of that caused by a gradual release of methane. Two other hypotheses are proposed by Jahren (2002). The first involves very rapid and localized epirogenesis in a hypothetical oceanic region rich in methane hydrate. The second requires large-scale warming of sediments when a major extrusion of basalts accompanied the formation of the Kerguelen and Ontong-Java plateaux (120-80 Ma).

We too lean toward a tectonic cause of destabilization. The Aptian stage was a tectonically and seismically unstable time because of a major structuring phase along the continental margins in the Tethyan and Atlantic (Masse et alii, 1993) and Pacific domains (Vaughan, 1995). We have mentioned the episode of exposure at the onset of the early Aptian identified in Provence and in the Vercors (Masse, 1998). In many regions (Pyrenean Trough, Hungary, Bosnia) bauxites are evidence of movement on tilted blocks (Combes & Peybernès, 1987). Many small interruptions in sedimentation developed on the margins of the Central Atlantic and Western Alps and in basins (Austrian-Alpine, Pindus-Olonos, Hawasina: Masse et alii, 1993). However, the question remains unanswered as to whether or not so brief and synchronous events can be demonstrated to have occurred in all of these areas.

Conclusion

Comparative analyses of geochemical and biostratigraphic data of lower Aptian series suggest that the negative δ13C excursion at the base of the upper Bedoulian may be related to a destabilization of gas hydrates trapped in sediments. The methane thus released, with its very low carbon isotope ratio, was oxidized to form CO2, which was then used by organisms to form pelagic carbonates characterized by low δ13C ratios. This oxidation of the methane led to anoxic trends in the environment and many of the MnO2 particles became unstable. The Mn2+ released thereby was also incorporated in the pelagic carbonates that developed a positive peak for manganese during the negative excursions of δ13C.

The δ13C excursion is developed over a length of time (D. deshayesi and base of the R. hambrowi ammonite zones, B. blowi and base of the S. cabri foraminifer zones, nannozone N6b) that possibly includes two episodes of methane hydrate release. Because of gaps, most sites record either the beginning or (more commonly) the end of the δ13C excursion. The Cassis-La Bédoule stratotype appears to be one of the rare series that recorded the entire phenomenon.

Acknowledgements

The authors would like to thank the reviewers for carefully reading the preliminary version of this paper and for their useful advices to improve it. Special thanks are due to N.J. Sander for his assistance in improving the English text.

Retour !

Bibliographic references

Accarie H., Renard M., Deconinck J.F., Beaudoin B. & Fleury J.J. (1989).- Géochimie des carbonates (Mn, Sr) et minéralogie des argiles de calcaires pélagiques sénoniens. Relations avec les variations eustatiques (Massif de la Maiella, Abruzzes, Italie).- Comptes-Rendus de l'Académie des Sciences, Paris, (II), t. 309, p. 1679-1685.

Accarie H., Renard M. & Jørgensen N.O. (1993).- Le manganèse dans les carbonates pélagiques : Un outil d'intérêt stratigraphique et paléogéographique (le Sénonien d'Italie, de Tunisie et du Danemark).- Comptes-Rendus de l'Académie des Sciences, Paris, (II), t. 316, p. 1-8.

Arthur M.A., Brumsack H.J., Jenkyns H.C. & Schlanger S.O. (1990).- Stratigraphy, geochemistry and palaeoceanography of organic carbon-rich Cretaceous sequences. In: Ginsburg R.N. & Beaudoin B. (eds.), Cretaceous Resources, Events and Rythms.- Kluwer, Amsterdam, p. 75-119.

Ando A., Kakegawa T., Takashima R. & Saito T. (2002).- New perspective on aptian carbon isotope stratigraphy: Data from δ13C records of terrestrial organic matter.- Geology, Boulder, vol. 30, n° 3, p. 227-230.

Barchi P. (1995).- Géochimie et magnétostratigraphie du Campanien de l'Europe du Nord-Ouest.- Mémoires des Sciences de la Terre, Université Pierre et Marie Curie, Paris, n° 95-1, 257 p.

Bartolini A., Baumgartner P. & Hunziker J. (1996).- Middle and Late Jurassique carbon stable-isotope stratigraphy and radiolarite sedimentation of the Umbria Marche Basin (Central Italy).- Eclogae Geologicae Helvetiae, Basel, vol. 88, n° 2, p. 811-844.

Beerling D.J., Lomas M.R. & Gröcke D.R. (2002).- On the nature of methane gas-hydrate dissociation during the Toarcian and Aptian Oceanic Anoxic Events.- American Journal of Science, New Haven, vol. 302, p. 28-49.

Bellanca A., Erba E., Neri R., Premoli Silva I., Sprovieri M., Tremolada F. & Verga D. (2002).- Palaeoceanographic significance of the Tethyan 'Livello Selli' (Early Aptian) from the Hybla Formation, northwestern Sicily: Biostratigraphy and high-resolution chemostratigraphic records.- Palaeogeography, Palaeoclimatology, Palaeoecology, Amsterdam, vol. 185, n° 1-2, p. 175-196.

Bender M.L., Teh-Lung Ku & Broecker W.S. (1970).- Accumulation rates of manganese in pelagic sediments and nodules.- Earth and Planetary Science Letters, Amsterdam, vol. 8, n° 2, p. 143-148.

Bergen J.A. (1998).- Calcareous nannofossils from the lower Aptian historical stratotype at Cassis-La Bédoule (SE, France).- Géologie Méditerranéenne, Marseille, t. XXV, n° 3-4, p. 227-255.

Bralower T.J., CoBabe E., Clement B., Slitter W.V., Osburn C.L. & Longoria J. (1999).- The record of global change in the mid-Cretaceous (Barremian-Albian) sections from the Sierra Madre, Northern Mexico.- Journal of Foraminiferal Research, Washington, vol. 29, n° 4, p. 418-437.

Bostrom K. & Peterson M.N.A. (1969).- The origin of aluminium poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise.- Marine Geology, Amsterdam, vol. 7, n° 5, p. 427-447.

Bréheret J.G. (1988).- Épisodes de sédimentation riches en matière organique dans les marnes bleues d'âge Aptien-Albien de la partie pélagique du Bassin Vocontien.- Bulletin de la Société géologique de France, Paris, (8), t. IV, n° 2, p. 349-356.

Burdige D.J. (1993).- The biogeochemistry of manganese and iron reduction in marine sediments.- Earth-Science Reviews, Amsterdam, vol. 35, n° 3, p. 249-284.

Coccioni R., Mretti E., Nesci O., Tramontana M. & Wezel C.F. (1987).- Descrizione di un livello-guida "Radiolaritico-Bituminoso-Ittiolithico" alla base deglie Marne a Fucoidi nell'Appennino Umbro-Marchigiano.- Bolletino della Società geologica italiana, Roma, vol. 106, p. 183-192.

Cohen A.S., Coe A.L., Harding S.M. & Schwark L. (2004).- Osmium isotope evidence for the regulation of atmospheric CO2 by continental weathering.- Geology, Boulder, vol. 32, n° 2, p. 157-160.

Combes P.J. & Peybernès B. (1987).- Les altérites et les brèches des Pyrénées basco-béarnaises liées à l'évolution polyphasée de la marge passive nord ibérique au Jurassique et au Crétacé inférieur.- Comptes-Rendus de l'Académie des Sciences, Paris, (II), t. 305, p. 49-54.

Corbin J.C. (1994).- Evolution géochimique du Jurassique du Sud-Est de la France : Influence des variations du niveau marin et de la tectonique.- Mémoires des Sciences de la Terre, Université Pierre et Marie Curie, Paris, n° 94-12, 177 p.

Corbin J.C., Person A., Iatzoura A., Ferré B. & Renard M. (2000).- Manganese in pelagic carbonates: Indication of major tectonic events during the geodynamic evolution of a passive continental margin (the Jurassic European Margin of the Tethys-Ligurian Sea).- Palaeogeography, Palaeoclimatology, Palaeoecology, Amsterdam, vol. 156, n° 1-2, p. 123-138.

Corfield R.M., Cartlidge J.E., Premoli Silva I. & Housley R.A. (1991).- Oxygen and carbon isotope stratigraphy of the Paleogene and Cretaceous limestones in the Bottacione Gorge and the Contessa Highway sections, Umbria, Italy.- Terra Nova, Oxford, vol. 4, n° 4, p. 414-422.

Cresta S., Monechi S. & Parisi G. (1989).- Stratigraphia del Mesozoico e Cenozoico nell'area Umbro-Marchigiana.- Memorie descrittive della Carta geologica d'Italia, Roma, vol. XXXIX, p. 146-170.

Delanoy G. (1996).- Biostratigraphie des faunes d'Ammonites à la limite Barrémien-Aptien dans la région d'Angles-Barrême-Castellane. Étude particulière de la famille des Heteroceratidae Spath, 1922 (Ancyloceratina, Ammonoidea).- Diplôme Universitaire de Recherche, Université Nice-Sophia Antipolis, p. 1-325.

Dickens G.R. (2001).- The potential volume of oceanic methane hydrates with external conditions.- Organic Geochemistry, Amsterdam, vol. 32, n° 10, p. 1179-1193.

Dickens G.R., O'Neil J.R., Rea D.K. & Oven R.M. (1995).- Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene.- Paleoceanography, Washington, vol. 10, n° 6, p. 965-972.

Dillon W.P. & Paull C.K. (1983).- Marine gas hydrate: II. Geophysical evidence. In: Cox J.L. (ed.), Natural gas hydrates: Properties, occurrence and recovery.- Butterworth, Woburn, p. 73-90.

Emmanuel L. (1993).- Apport de la géochimie à la stratigraphie séquentielle. Application au Crétacé inférieur vocontien.- Mémoires des Sciences de la Terre, Université Pierre et Marie Curie, Paris, n° 93-5, 191 p.

Emmanuel L. & Renard M. (1993).- Carbonate geochemistry (Mn, δ13C, δ18O) of the late Tithonian-Berriasian pelagic limestones of the Vocontian Trough (SE France).- Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, Pau, vol. 17, n° 1, p. 205-221.

Erba E. (1994).- Nannofossils and superplumes: The early Aptian "nannoconids crisis".- Paleoceanography, Washington, vol. 9, n° 3, p. 483-501.

Erba E., Channell J.E.T., Claps M., Larson R.L., Opdyke B., Premoli Silva I., Riva A., Salvini G., & Torricelli S. (1999).- Integrated stratigraphy of the Cismon APTICORE (Southern Alps, Italy): A "reference section" for the Barremian-Aptian interval at low latitudes.- Journal of Foraminiferal Research, Washington, vol. 29, n° 4, p. 371-391.

Erbacher J. & Thurow J. (1997).- Influence of Oceanic Anoxic Events on the evolution of mid-Cretaceous radiolaria in the North Atlantic and western Tethys.- Marine Micropaleontology, Amsterdam, 30, p. 139-158.

Field M.E. & Kvenvolden K.A. (1985).- Gas hydrates on the northern California continental margin.- Geology, Boulder, vol. 13, n° 7, p. 517-520.

Galbrun B. (1998).- Magnétostratigraphie au passage Barrémo-Aptien dans le stratotype historique de l'Aptien inférieur dans la région de Cassis-La Bédoule (SE France).- Géologie Méditerranéenne, Marseille, t. XXV, n° 3-4, p. 81-83.

Gornitz V. & Fung I. (1994).- Potential distribution of methane hydrates in the world's oceans.- Global Biogeochemical Cycles, Washington, vol. 8, n° 3, p. 335-347.

Gröcke D.R., Hesselbo S.P. & Jenkyns H.C. (1999).- Carbon isotope composition of Lower Cretaceous fossil wood: Ocean-atmosphere chemistry and relation to sea-level change.- Geology, Boulder, vol. 27, n° 2, p. 155-158.

Hadji S. (1991).- Stratigraphie isotopique des carbonates pélagiques (Jurassique supérieur-Crétacé inférieur) du Bassin d'Ombrie-Marches (Italie).- Mémoires des Sciences de la Terre, Université Pierre et Marie Curie, Paris, n° 91-23, 160 p.

Heimhofer U., Hochuli P.A., Burla S., Andersen N. & Weissert H. (2003).- Terrestrial carbon-isotope records from coastal deposits (Algarve, Portugal): A tool for chemostratigraphic correlation on an intrabasinal and global scale.- Terra Nova, Oxford, vol. 15, n° 1, p. 8-13.

Hesselbo S.P., Gröcke D.R., Jenkyns H.C., Bjerrum C.J., Farrimond P., Bell H.S., & Green O.R. (2000).- Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event.- Nature, London, vol. 406, p. 392-395.

Jahren A.H. (2002).- The biogeochemical consequences of the mid-Cretaceous superplume.- Journal of Geodynamics, Amsterdam, vol. 34, n° 2, p. 177-191.

Jahren A.H., Arens N.C., Sarmiento G., Guerrero J. & Amundson R. (2001).- Terrestrial record of methane hydrate dissociation in the Early Cretaceous.- Geology, Boulder, vol. 29, n° 2, p. 159-162.

Jarvis I. & Murphy A. (1999).- Chemostratigraphic definition of sequence boundaries: The Cenomanian (Upper Cretaceous) of southern England.- Journal of Conference Abstracts, Cambridge, EUG 10 (28th March - 1st April, 1999, Strasbourg), vol. 4, n° 1, p. 734.

Jenkyns H.C. (1980).- Cretaceous anoxic events: From continents to oceans.- Journal of the Geological Society, London, vol. 137, n° 2, p. 171-188.

Jenkyns H.C. (1995).- Carbon isotope stratigraphy and palaeoceanographic significance of the Lower Cretaceous shallow water carbonates of Resolution Guyot, Mid-Pacific Mountains. In: Winter E.L., Sager W., Firth J. & Sinton J.M. (eds.).- Proceedings of the Ocean Drilling Program, Scientific Results, College Station, vol. 143, p. 99-104.

Jenkyns H.C. & Clayton C.J. (1997).- Lower Jurassic epicontinental carbonates and mudstones from England and Wales: Chemostratigraphic signals and the early Toarcian anoxic event.- Sedimentology, Oxford, vol. 44, n° 4, p. 687-706.

Jenkyns H.C., Gale A.S. & Corfield R.M. (1994).- Carbon- and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance.- Geological Magazine, Cambridge, vol. 131, n° 1, p. 1-34.

Jenkyns H.C., Jones C.E., Gröcke D.R., Hesselbo S.P. & Parkinson D.N. (2002).- Chemostratigraphy of the Jurassic System: Applications, limitations and implications for paleoceanography.- Journal of the Geological Society, London, vol. 159, n° 4, p. 351-378.

Kennedy M.J., Christie-Blick N. & Sohl L.E. (2001).- Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilisation following Earth's coldest intervals?- Geology, Boulder, vol. 29, n° 5, p. 443-446.

Kennett J.P & Stott L.D. (1995).- 5. Terminal Paleocene mass extinction in deep sea: Association with global warming. In: Effects of past global change on life.- The National Academies Press, Washington, p. 94-107.

Klinkhammer G.P (1980).- Observations of the distribution of manganese over the East Pacific Rise.- Chemical Geology, Amsterdam, vol. 29, n° 1-4, p. 211-226.

Klinkhammer G.P. & Bender M.L. (1980).- The distribution of Manganese in the Pacific Ocean.- Earth and Planetary Science Letters, Amsterdam, vol. 46, n° 3, p. 361-384.

Kuhnt W., Moullade M., Masse J.P. & Erlenkeuser H. (1998).- Carbon isotope stratigraphy of the lower Aptian historical stratotype at Cassis-La Bédoule (S.E. France).- Géologie Méditerranéenne, Marseille, t. XXV, n° 3-4, p. 63-79.

Larson R.L. (1991a).- Latest pulse of Earth: Evidence for a mid-Cretaceous superplume.- Geology, Boulder, vol. 19, n° 6, p. 547-550.

Larson R.L. (1991b).- Geological consequences of superplumes.- Geology, Boulder, vol. 19, n° 10, p. 963-966.

Larson R.L. & Erba E. (1999).- Onset of the mid-Cretaceous greenhouse in the Barremian-Aptian: Igneous events and the biological, sedimentary and geochemical reponses.- Paleoceanography, Washington, vol. 14, n° 6, p. 663-678.

Le Callonnec L. (1998).- Apports de le géochimie des carbonates pélagiques à la stratigraphie et à la paléo-océanographie du Paléocène et de la limite Paléocène-Eocène.- Mémoires des Sciences de la Terre, Université Pierre et Marie Curie, Paris, n° 98-2, 260 p.

Letolle R. & Renard M. (1980).- Evolution des teneurs en 13C des carbonates pélagiques aux limites Crétacé-Tertiaire et Paléocène-Eocène.- Comptes-Rendus de l'Académie des Sciences, Paris, (II), t. 290, p. 827-830.

Lyle M. (1976).- Estimation of hydrothermal manganese input to the oceans.- Geology, Boulder, vol. 4, n° 12, p. 733-736.

Magaritz M. (1991).- Carbon isotopes, time boundaries and evolution.- Terra nova, Oxford, vol. 3, n° 3, p. 251-256.

Masse J.-P. (1994).- Anatomie et fonctionnement de la plate-forme urgonienne à rudistes (Aptien inférieur p.p.) des Monts-de-Vaucluse et du Ventoux (S.E. France). In: Géométrie et productivité des plates-formes carbonatées, Séance spécialisée A.S.F.- S.G.F. (Paris, 8 Décembre), Livre des Résumés, Publication ASF, Paris, 21, p. 25.

Masse J.-P. (1998).- Sédimentologie du stratotype historique de l'Aptien inférieur dans la région de Cassis-La Bédoule (SE France).- Géologie Méditerranéenne, Marseille, t. XXV, n° 3-4, p. 31-41.

Masse J.-P., Bellion Y., Benkhelil J., Dercourt J., Guiraud R. & Ricou L.E. (1993).- Lower Aptian (114-112 Ma). In: Dercourt J., Ricou L.E. & Vrielynck B. (eds.), Atlas Tethys Paleoenvironmental Maps. Explanatory Notes.- Gauthier-Villars, Paris, p. 135-152.

Masse J.-P., El Albani A. & Erlenkeuser H. (1999).- Stratigraphie isotopique (δ13C) de l'Aptien inférieur de Provence (SE France): Application aux corrélations plate-forme/bassin.- Eclogae Geologicae Helvetiae, Basel, , vol. 92, p. 259-263.

Masse J.-P. & Machhour L. (1998).- La matière organique de la série du stratotype historique de l'Aptien inférieur de Cassis-La Bédoule (SE, France).- Géologie Méditerranéenne, Marseille, t. XXV, n° 3-4, p. 55-63.

Masse J.-P., Moullade M. & Tronchetti G. (1998).- Cadre régional du stratotype historique de l'Aptien inférieur dans la région de Cassis-La Bédoule (SE France).- Géologie Méditerranéenne, Marseille, t. XXV, n° 3-4, p. 11-14.

Menegatti A.P., Weissert H., Brown R.S., Tyson R.V., Farrimond P., Strasser A. & Caron M. (1998).- High resolution δ13C stratigraphy through the early Aptian "Livello Selli" of the Alpine Tethys.- Paleoceanography, Washington, vol. 13, n° 5, p. 530-545.

Michard G. (1969).- Contribution à l'étude du comportement du manganèse dans la sédimentation océanique.- Thèse Doctorat d'État, Faculté des sciences, Université de Paris, 195 p.

Moullade M., Kuhnt W., Bergen J.A., Masse J.-P. & Tronchetti G. (1998a).- Corrélation of biostratigraphic and stable isotope events in the Aptian historical stratotype of La Bédoule (SE France).- Comptes-Rendus de l'Académie des Sciences, Paris, (II), t. 327, p. 693-698.

Moullade M., Masse J.-P., Tronchetti G., Kuhnt W., Ropolo P., Bergen J.A., Masure E. & Renard M. (1998b).- Le stratotype historique de l'Aptien inférieur (région de Cassis-La Bédoule) : Synthèse stratigraphique.- Géologie Méditerranéenne, Marseille, t. XXV, n° 3-4, p. 289-298.

Moullade M., Taxy S. & Tronchetti G. (1998c).- Rappel historique sur l'étage Aptien et ses stratotypes.- Géologie Méditerranéenne, Marseille, t. XXV, n° 3-4, p. 5-9.

Moullade M., Tronchetti G., Busnardo R. & Masse J.-P. (1998d).- Description lithologique des coupes types du stratotype historique de l'Aptien inférieur dans la région de Cassis-La Bédoule (SE France).- Géologie Méditerranéenne, Marseille, t. XXV, n° 3-4, p. 15-29.

Moullade M., Tronchetti G., Kuhnt W. & Masse J.-P. (1998e).- Les foraminifères benthiques et planctoniques du stratotype historique de l'Aptien inférieur dans la région de Cassis-La Bédoule (SE France).- Géologie Méditerranéenne, Marseille, t. XXV, n° 3-4, p. 187-225.

Padden M., Weissert H. & Rafélis M. de (2001).- Evidence for Late Jurassic release of methane from gas hydrate.- Geology, Boulder, vol. 29, n° 3, p. 223-226.

Paull C.K., Ussler W. III & Borowski W. (1994).- Sources of biogenic methane to form marine gas-hydrates: in situ production or upward migration?- Annals of the New York Academy of Sciences, vol. 715, p. 392-409.

Pingitore N.E., Eastman M.P., Sandidge M., Oden K. & Freiha B. (1988).- The coprecipitation of manganese (II) with calcite: An experimental study.- Marine Chemistry, Amsterdam, vol. 25, n° 2, p. 107-120.

Pomerol B. (1976).- Géochimie des craies du cap d'Antifer.- Bulletin de la Société géologique de France, Paris, (7), t. XVIII, n° 4, p. 1051-1060.

Pomerol B. (1984).- Géochimie des craies du bassin de Paris.- Thèse Doctorat d'État, Mémoires des Sciences de la Terre, Université Pierre et Marie Curie, Paris, n° 284-21, 540 p.

Pearce C.R., Hesselbo S.P. & Coe A.L. (2005).- The mid-Oxfordian (Late Jurassic) positive carbon-isotope excursion recognised from fossil wood in the British Isles.- Palaeogeography, Palaeoclimatology, Palaeoecology, Amsterdam, vol. 221, p. 243-357.

Pratt L.M., Force E.R. & Pomerol B. (1991).- Coupled manganese and carbon-isotopic events in marine carbonates at the Cenomanian-Turonian boundary.- Journal of Sedimentary Petrology, Tulsa, vol. 61, n° 3, p. 370-383.

Rafélis M. de (2000).- Apport de l'étude de la spéciation du manganèse dans les carbonates pélagiques à la compréhension du contrôle des séquences eustatiques de 3ème ordre.- Mémoires des Sciences de la Terre, Université Pierre et Marie Curie, Paris, n° 2000-02, 214 p.

Rafélis M. de, Emmanuel L., Renard M., Atrops F. & Jan du Chêne R. (2001).- Geochemical characterisation (Mn content) of third order sequences in Upper Jurassic pelagic carbonates of the Vocontian Trough (S.E. France).- Eclogae Geologicae Helvetiae, Basel, vol. 94, p. 145-152.

Rafélis M. de, Renard M., Emmanuel L. & Durlet C. (2000).- Apport de la cathodoluminescence à la connaissance de la spéciation du manganèse dans les carbonates pélagiques.- Comptes-Rendus de l'Académie des Sciences, Paris, (II), t. 330, p. 391-398.

Renard M. (1985).- Géochimie des carbonates pélagiques. Mise en évidence des fluctuations de la composition des eaux océaniques depuis 140 MA. Essai de chimiostratigraphie.- Documents du BRGM, Orléans, n° 85, 650 p.

Renard M. (1986).- Pelagic carbonate chemostratigraphy (Sr, Mg, 18O, 13C).- Marine Micropaleontology, Amsterdam, n° 1-3, p. 117-164.

Renard M. & Blanc P. (1971).- Mise au point d'un protocole expérimental pour le dosage d'éléments en traces (V, Cr, Mn, Ni, Sr, Mo) par absorption atomique.- Comptes-Rendus de l'Académie des Sciences, Paris, (II), t. 272, p. 2285-2288.

Renard M. & Blanc P. (1972).- Influence des conditions de mise en solution (choix de l'acide, température, durée de l'attaque) dans le dosage des éléments en traces des carbonates.- Comptes-Rendus de l'Académie des Sciences, Paris, (II), t. 274, p. 632-635.

Renard M., Daux V., Corbin J-C., Emmanuel L. & Baudin F. (1997).- La chimiostratigraphie. In: Rey J. (ed.), Stratigraphie terminologie française.- Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, Pau, Mémoire 19, p. 37-50.

Renard M. & Letolle R. (1983).- Essai d'interprétation du rôle de la profondeur de dépôt dans la répartition des teneurs en manganèse et dans l'évolution du rapport isotopique du carbone des carbonates pélagiques : Influence de l'oxygénation du milieu.- Comptes-Rendus de l'Académie des Sciences, Paris, (II), t. 296, p. 1739-1740.

Renard M. & Rafélis M. de (1998).- Géochime des éléments traces de la phase carbonatée des calcaires de la coupe du stratotype historique de l'Aptien inférieur dans la région de Cassis-La Bédoule (S.E. France).- Géologie Méditerranéenne, Marseille, t. XXV, n° 3-4, p. 43-54.

Rey R. & Delgado A. (2002).- Carbon and oxygen isotopes: A tool for jurassic and early Cretaceous pelagic correlation (southern Spain).- Geological Journal, Liverpool, vol. 37, n° 4, p. 337-345.

Richebois G. (1990).- Dosage de quelques éléments traces dans les eaux naturelles et les roches carbonatées. Application à l'étude géochimique de la coupe du Kef (Tunisie).- Diplôme d'Études supérieures, Université Pierre et Marie Curie, Paris, 177 p.

Ropolo P., Conte G., Gonnet R., Masse J.-P. & Moullade M. (1998).- Les faunes d'Ammonites du Barrémien supérieur/Aptien inférieur (Bédoulien) dans la région stratotypique de Cassis-La Bédoule (SE France) : État des connaissances et propositions pour une zonation par Ammonites du Bédoulien type.- Géologie Méditerranéenne, Marseille, t. XXV, n° 3-4, p. 167-175.

Scholle P.A. & Arthur M.A. (1980).- Carbon isotope fluctuations in Cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool.- American Association of Petroleum Geologists, Bulletin, Tulsa, vol. 64, p. 67-87.

Schmitz B., Asaro F., Molina E. & Speijer R.P. (1997).- High-resolution iridium δ13C, δ18O, foraminifera and nannofossil profiles across the latest Paleocene benthic extinction event at Zumaya, Spain.- Palaeogeography, Palaeoclimatology, Palaeoecology, Amsterdam, vol. 133, n°  1-2, p. 49-68.

Schouten S., Van Kaam-Peters H.M.E., Rijpstra W.I.C., Schoell M. & Sinningue Damste J.S. (2000).- Effects of an oceanic anoxic event on the stable carbon isotopic composition of the Early Toarcien carbon.- American Journal of Sciences, New Haven, vol. 300, p. 1-22.

Shackleton N. & Hall M. (1990).- Carbon isotope stratigraphy of bulk sediments.- Proceedings of the Ocean Drilling Program, Initial Reports, College Station, DSDP 113, p. 985-989.

Sloan E.D. (1990).- Clathrate hydrates of natural gases.- Marcel Dekker, New York, 641 p.

Stoll R.D., Ewing J. & Bryan G. (1972).- Anomalous wave velocities in sediments containing gas hydrates.- Journal of Geophysical Research, Washington, vol. 76, p. 2090-2094.

Strauss H. & Peters-Kottig W. (2003).- Paleozoic to Mesozoic carbon cycle revisited: the carbon isotopic composition of terrestrial organic matter.- Geochemistry Geophysics Geosystems, Washington, vol. 4, n° 10, p. 1083.

Thomson J., Higgs N.C., Jarvis I., Hydes D.J., Colley S. & Wilson T.R.S. (1986).- The behavior of manganese in Atlantic carbonate sediments.- Geochimica et Cosmochimica Acta, Oxford, vol. 50, n° 8, p. 1807-1818.

Tinivella U. & Lodolo E. (2000).- 28. The Blake Ridge bottom-simulating reflector transect: tomographic velocity field and theoretical model to estimate methane hydrate quantities.- Proceedings of the Ocean Drilling Program, Scientific Results, College Station, vol. 164, p. 273-281.

Vail P.R., Mitchum R.M. Jr., Todd R.G., Widmier J.M., Thompson S. III, Sangree J.B., Bubb J.N. & Hatlelid W.G. (1977).- Seismic stratigraphy and global changes of sea level. In: Payton C.E. (ed.), Seismic stratigraphy - applications to hydrocarbon exploration.- American Association of Petroleum Geologists, Memoir, Tulsa, 26, p. 49-212.

Vaughan A.P.M. (1995).- Circum-Pacific mid-Cretaceous deformation and uplift: a superplume-related event?- Geology, Boulder, vol. 23, n° 6, p. 491-494.

Von Damm K.L. (1995).- Temporal and compositional diversity in seafloor hydrothermal fluids.- Reviews of Geophysics, Washington, vol. 33, Issue S1, p. 1297-1305.

Weissert H. (1989).- C-isotope stratigraphy, a monitor of paleoenvironmental change: a case study from Early Cretaceous.- Surveys in Geophysics, Amsterdam, vol. 10, n° 1, p. 1-61.

Weissert H. (2000).- Deciphering methane's fingerprint.- Nature, London, vol. 406, p. 356-357

Weissert H. & Bréheret J.G. (1991).- A carbonate carbon-isotope record from Aptian-Albian sediments of the Vocontian Trough (SE France).- Bulletin de la Société géologique de France, Paris, (8), t. 162, n° 6, p. 1133-1140.

Weissert H. & Channell J.E.T. (1989).- Tethyan carbonate carbon isotope stratigraphy across the Jurassic-Cretaceous boundary. An indicator of decelerated global carbon cycling.- Paleoceanography, Washington, vol. 4, n° 4, p. 483-494.

Weissert H. & Erba E. (2004).- Volcanism, CO2 and palaeoclimate: a Late Jurassic-Early Cretaceous carbon and oxygen isotope record.- Journal of the Geological Society, London, vol. 161, n° 4, p. 695-702.

Weissert H. & Lini A. (1991).- Ice age interludes during the time of Cretaceous greenhouse climate. In: Müller D.W., Mc Kenzie J.A. & Weissert H. (ed.), Controversies in Modern Geology: Evolution of Geological Theories in Sedimentology, Earth History and Tectonics.- Academic Press, London, p. 173-191.

Wierzbowski H. (2002).- Detailed oxygen and carbon isotope stratigraphy of the Oxfordian in Central Poland.- International Journal of Earth Sciences (Geologische Rundschau), Stuttgart, vol. 91, n° 2, p. 304-314.

Zachos J. & Arthur M. (1986).- Paleoceanography of the Cretaceous/Tertiary boundary event: inferences from stable isotopic and other data.- Paleoceanography, Washington, vol. 1,  n° 1, p. 5-26.


Retour !

Figures


Click on thumbnail to enlarge the image.

Figure 1: 1A: Location of the La Bédoule-Cassis area. 1B: Paleogeographical scheme of the South Provence intrashelf basin during the Lower Aptian.


Click on thumbnail to enlarge the image.

Figure 2: δ13C, δ18O and Mn evolution curves from La Bédoule-Cassis sections (Gare de Cassis, Les Sardons and Camping outcrops) and biostratigraphic framework (Moullade et alii, 1998). Shaded area underlines geochemical anomalies related to dysoxic / anoxic events possibly linked to methane hydrate dissociation.


Click on thumbnail to enlarge the image.

Figure 3: Lower Cretaceous long term evolution of bulk carbonate δ13C. This composite curve includes isotopic data from the La Bédoule stratotype and from the Vocontian trough (Angles and Vergons sections, Emmanuel, 1993). Note that the positive excursion ranging from middle Hauterivian to Aptien is cutted by two negative shifts. The first one, located at the Barremain/Aptian boundary is related to a stratigraphic hiatus. The second one, in the base of the upper Bédoulian is related to a methane hydrate dissociation event (see text).


Click on thumbnail to enlarge the image.

Figure 4: Correlation of the δ13C record from the La Bédoule section with the curves of Weissert & Bréheret (1991) from the Vocontian basin, Weissert & Lini (1991) from the Cismon section, Erbacher & Thurow (1997) from the Corgo a Cerbara section and Jenkyns (1995) from the Resolution Guyot in the Pacific (from Kuhnt et alii, 1998).


Click on thumbnail to enlarge the image.

Figure 5: Detailed comparison of the δ13C record from the La Bédoule and the Cismon section (Erba & Larson, 1999). Cismon section stratigraphy has been reinterpreted in this study for the definition of the base and the top of the Aptian (see text). This comparison involves the existence of a major sedimentary gap or of extreme condensation of the B. blowi Zone at Cismon and of a minor gap at the base of this zone in the La Bedoule stratotype section (Bed 129).


Click on thumbnail to enlarge the image.

Figure 6: Carbon isotope ratio and Mn content of bulk carbonate relationships. Note the geochemical originality (high Mn content and low δ13C ) of the carbonate from the D. deshayesi Zone and the base of the R. hambrowi Subzone with regard to other Bedoulian carbonates.


Click on thumbnail to enlarge the image.

Figure 7: Behaviour of CO2, O2, and Mn in sea water and sediments:
7A: Oxic conditions during the Lower Bedoulian. Increasing of productivity and trapping of organic matter induce a δ13C positive excursion.


Click on thumbnail to enlarge the image.

7B: Anoxic / dysoxic conditions related to methane hydrate dissociation during the Lower - Upper Bedoulian transition. Oxidation of methane produces CO2 with very low δ13C and MnO2 particles are reduced under this anoxic conditions resulting from this phenomena. Released Mn2+ is incorporated in the lattice of pelagic calcite.


Back to Top!