Carnets de Géologie / Notebooks on Geology: Article 2010/08 (CG2010_A08)

Click here to close the window!


[Introduction] [Materials and methods] [Historical overview ...]
[Systematic paleontology] [Geographical and stratigraphical distribution ...]
[Mode of life ...] [Phylogeny] [Homoeomorphy] [Conclusion]
[Appendix] [Bibliographic references] and ... [Table]

Systematics, phylogeny and homeomorphy of
the Engonoceratidae Hyatt, 1900 (Ammonoidea, Cretaceous)
and revision of Engonoceras duboisi Latil, 1989

László Bujtor

Department of Geology, University of Pécs, 6 Ifjúság Street, H-7624 Pécs (Hungary);
Corresponding address: 63 Fenyofa Street, H-2030 Érd (Hungary)

Manuscript online since December 24, 2010

Click here to download the PDF version!


The Engonoceratidae may well have originated on the shallow marine carbonate platforms of the southern margin of the Mediterranean Province of the Tethyan Realm during the earliest Albian (?latest Aptian). In the entire Tethyan Realm and beyond adaptive radiation of the group was rapid and successful during the early Albian as indicated by endemic centres in the Peruvian Basin and the Western Interior Sea (USA). Later the group successfully enlarged its distribution, and invaded some provinces (Mowry Sea, Canada) of the Boreal Realm. The mode of life of engonoceratids seems to have been nektoplanktonic, epipelagic, and stenohaline, restricted to shallow water and platform or in some cases extremely shallow (littoral and lagoonal) facies which may have helped their radiation. The group is distinctive and consists of nine genera and up to a hundred species, although its origin is still obscure. Their appearance may have been triggered by the oceanic anoxic event (OAE 1b) and their rapid rise may have been helped by their shallow water mode of life and the global mid-Cretaceous warming and rise in sea level. The fall of the engonoceratids coincides with the end-Cenomanian rapid transgression, which may have changed their shallow water habitats. Today the group is considered to have been a successful colonizer, a reliable stratigraphical indicator for shallow marine environments and a pioneer taxon for recognition of transgressive phases.
Based on new material and sutural analysis, Engonoceras duboisi is revised and assigned to Parengonoceras. A set of features consisting of a simplified ceratitid suture, lanceolate and compressed oxycone shell together comprising a shallow marine ecotype is pointed out as a successful and repeated morphotype among Mesozoic Ammonoidea, for it was repeated three times during ammonoid evolution.

Key Words

Ammonites; Albian; Cenomanian; phylogeny; systematics; homeomorphy.


Bujtor L. (2010).- Systematics, phylogeny and homeomorphy of the Engonoceratidae Hyatt, 1900 (Ammonoidea, Cretaceous) and revision of Engonoceras duboisi Latil, 1989.- Carnets de Géologie / Notebooks on Geology, Brest, Article 2010/08 (CG2010_A08)


Systématique, phylogénie et homéomorphie des Engonoceratidae Hyatt, 1900 (Ammonoidea, Crétacé) et révision de Engonoceras duboisi Latil, 1989.- Les Enganoceratidae apparaissent à l'Albien basal (ou peut-être dès l'Aptien terminal) dans les séries de plates-formes carbonatées de la marge sud de la province méditerranéenne du domaine téthysien. Leur efficacité évolutive leur permet de coloniser rapidement l'ensemble du domaine téthysien et même au delà comme le montre la présence de groupes endémiques dans le Bassin Péruvien et dans la mer intérieure occidentale des États-Unis. Plus tard, le groupe élargira encore plus son aire de distribution en envahissant certaines régions du domaine boréal (mer de Mowry, Canada). Les Enganoceratidae semblent avoir eu un mode de vie nectoplanctonique, épipélagique et sténohalin au sein de mers chaudes peu à très peu profondes (rivages, lagons), dont la fréquence a favorisé leur évolution. Ce groupe, dont l'origine est obscure, est bien individualisé. Il comprend neuf genres et une centaine d'espèces. Leur apparition semble avoir été provoquée par la crise anoxique OAE 1b et leur rapide expansion favorisée par l'extension progressive des mers chaudes et épicontinentales qui accompagne la montée des eaux du milieu du Crétacé. Le déclin des Enganoceratidae semble lié à l'accélération de la montée des mers qui caractérise la fin du Cénomanien, sans doute par modification substantielle de leurs habitats peu profonds. Ce groupe est considéré comme un colonisateur efficace et un bon indicateur de milieux de faible profondeur en ambiance transgressive.
À partir de nouvelles études stratigraphiques et structurales, il est proposé une révision de l'espèce Engonoceras duboisi qui doit être rattachée au genre Parengonoceras. Par ailleurs, il est mis en évidence que le fait de présenter des sutures simplifiées de type Cératite et une coquille lancéolée à oxycône comprimé est symptomatique d'ammonites adaptées à des milieux marins peu profonds. Ce modèle est, en effet, répété trois fois au long de l'évolution des Ammonoïdes mésozoïques.


Ammonites ; Albien ; Cénomanien ; phylogénie ; systématique ; homéomorphie.


Engonoceratid ammonites form a distinct but perplexing group among Cretaceous Ammonoidea. Their systematics is still confusing and their origin is obscure. After the period of great monographs on engonoceratid ammonites (Hyatt, 1903; Pervinquière, 1907; Sommermeier, 1910; Basse, 1940; Knechtel in Knechtel et alii, 1947; Dubourdieu, 1953; Mahmoud, 1955; Benavides-Cáceres, 1956; Renz, 1970, 1982; Etayo-Serna, 1979), twelve new species have been introduced and forty species invalidated. This prompts a review of the group, and a discussion on the ecology and facies dependency of certain of its taxa. Recent debates on the systematics of Engonoceratidae also invite a review of the systematic position, ecology, distribution, phylogeny and homoeomorphy of this group of fossils and of the species assigned it.

Materials and methods

The following abbreviations indicate the repositories of specimens mentioned in the text: HNHM, Hungarian Natural History Museum, Budapest, Hungary; LC, Lumachella Collection (private collection of Mr. Zoltán Evanics, 29 Szatmár Street, Budapest, H-1194 Hungary); MHNG-GEPI, Collection Muséum d'Histoire naturelle de Genève, Switzerland. Suture terminology is after Kullmann & Wiedmann (1970): E, external lobe; L, lateral lobe; U, umbilical lobe; I, internal lobe. Note that Korn et alii (2003) revised the sutural terminology of the Paleozoic prolecanitid ammonites, which implies its modification for Mesozoic ammonoids too, but this modification has not been published yet. All dimensions are in millimetres: D, diameter; Wb, whorl breadth; Wh, whorl height; U, umbilicus; myr: million year. Species names in brackets indicate invalidation.

Historical overview of the concept of Engonoceratidae

The name Ceratites was introduced by de Haan (1825) for a group of Triassic ammonites with simplified suture lines. As early research developed, Ceratites-like fossils of Cretaceous age were discovered, so early palaeontologists included these fossils into the ceratitid group, naming them as Cretaceous Ceratites (Buch, 1848, p. 30) or "pseudo-ceratites based on an apparent resemblance between the sutures of Triassic ceratitids and those of Cretaceous engonoceratids" (Hyatt, 1903; G. Scott, 1940a, 1940b; Kennedy & Cobban, 1976; Rawson, 1981; Kennedy et alii, 1998a). The first engonoceratid ammonite was published by d'Orbigny (1841) as Ammonites Vibrayeanus [= Neolobites vibrayeanus] from France, and by Buch (1848) as Ammonites Syriacus [= Knemiceras syriacum] from Lebanon, and Ammonites pierdenalis [= Engonoceras pierdenalis] from Texas. Buch (1848) also called attention to the importance of the group referring to them as Cretaceous ceratitids ('Kreide-Ceratit'). Although Buch (1848) reported other "ceratitids" (whose suture lines superficially resemble those of the Triassic Ceratites) such as Ammonites Ewaldi and Ammonites Robini [= Metatissotia ewaldi and M. robini], these species belong to discrete taxa (Acanthoceratoidea) with no direct phyletic connection to the engonoceratids. The family name Engonoceratidae was introduced by Hyatt (1900, p. 585) to include Protengonoceras, Engonoceras, Metengonoceras, and Neolobites. Later Hyatt (1903, p. 144) established the family Knemiceratidae for Knemiceras. Based on the suture line Douvillé (1912, 1928, 1931) placed the group in the Pulchelliidae, an assignment accepted by G. Scott (1940b, p. 1066). Spath (1922, 1924) introduced Hypengonoceras, and Parengonoceras. The last described member of the family is Platiknemiceras (Bataller, 1954).

In the mid 1900's Chiplonkar (1941) and Moreman (1942) referred certain placenticeratid ammonites (Placenticeras mintoi, and P. planum) to the Engonoceratidae and Benavides-Cáceres (1956, p. 486) regarded Neolobites as incertae sedis again an indication of taxonomic uncertainty. Hypengonoceras was regarded as a placenticeratid ammonite (Casey, 1960) at that time the only known Lower Cretaceous placenticeratid. Later Renz (1970) summarized the systematic debates and content of the family, and Klinger & Kennedy (1989, p. 365) revised the systematic position of the most discussed member, Hypengonoceras, which they regarded as having been derived probably from Parengonoceras. Wright et alii (1996, p. 126) did not accept this rationale proposing a different origin for the genus: "Hypengonoceras, despite some resemblances to Engonoceratidae, seems to belong here" [= Placenticeratidae Hyatt, 1900] and confirmed that the family had an uncertain origin, "but some genera closely resemble Pulchelliidae but are probably not closely related" (Wright et alii, 1996, p. 130) and placed the family in the Hoplitoidea with these eight genera included: (Engonoceras, Hypengonoceras, Knemiceras, Metengonoceras, Neolobites, Parengonoceras, Platiknemiceras, and Protengonoceras). At present, the systematic position of Hypengonoceras is again disputed (Robert & Bulot, 2004). Robert (2002) resurrected the genus Glottoceras Hyatt 1875, a view supported by Robert & Bulot (2004, p. 20). As yet there is no unequivocal approach regarding the systematic position of the group. Schindewolf (1968, p. 747) had already emphasized the impossibility of placing the group properly until its sutural development is clearly known. He refers this family doubtfully to the Pulchelliidae or the Hoplitidae. Renz (1970) gave a detailed analysis of the engonoceratid sutural history. In the past forty years many species were introduced but no significant work was done on the sutural ontogeny of the Engonoceratidae. Although Robert & Bulot (2004) discussed the systematic position of the group placing it in the Pulchelliatoidea, this attribution is not yet widely accepted. Kennedy et alii (2004), Yacobucci (2004), Meister & Abdallah (2005), Szives et alii (2007), and Aly et alii (2008) place the group in the Hoplitoidea, while Latil (2008) refers it to the Pulchelliatoidea. Most recently, Bulot (2010, p. 169) rejects the pulchelliatoid origin of Engonoceratidae, suggesting that the genus Subpulchellia/Mogharaeceras is most likely an endemic offshoot of Barremites so cannot be the ancestor of the Engonoceratidae. Further uncertainty is indicated by Latil (in Moreno-Bedmar, 2008b, p. 160) regarding the systematic position of European Engonoceras sensu stricto. Robert & Bulot (2004, p. 11) stressed a pulchelliatoid origin based on a probable relation with the Barremian/Aptian Subpulchellia, but did not include a thorough discussion. Bulot (2010) proposes a new taxonomic rank for engonoceratid ammonites, the Superfamily Engonoceratoidea Hyatt, 1900. This taxonomic approach has certain advantages: on one hand it emphasizes the integrity of the group, thus highlighting its morphological independence. On the other hand this approach leaves open the problem of the origin of the group. As mentioned, Bulot (2010) rejected the pulchelliatoid origin of engonoceratid ammonites. If so, the most plausible explanation for its origin is the hoplitoids. This view may be strengthened by new data on the ecology of Aptian Parahoplites (Lehmann et alii, 2009). Consequently, the systematics and origin of Engonoceratidae are still open issues. Recently Engonoceratidae was considered to consist of nine genera (Engonoceras, Glottoceras, Hypengonoceras, Knemiceras, Metengonoceras, Neolobites, Parengonoceras, Platiknemiceras, and Protengonoceras), and 143 species (Table 1) of which 38 are invalid. They are listed in the section discussing the described genera and their species. The genus Pseudengonoceras referred to by Rawson (1981, p. 517) is a typing error for Parengonoceras (P. Rawson, pers. comm., 2009).

Systematic paleontology

Order Ammonitida Zittel, 1884

Suborder Ammonitina Hyatt, 1889

Superfamily Hoplitoidea Douvillé, 1890

Family Engonoceratidae Hyatt, 1900

= Knemiceratidae Hyatt, 1903, p. 144; Neolobitinae Luppov & Mikhailov, 1958, p. 125

Genus Glottoceras Hyatt, 1875, p. 372

(Fig. 1 )

Type species. Glottoceras attenuatum Hyatt, 1875, from the Lower Albian of Peru.

Click on thumbnail to enlarge the image.

Figure 1: Glottoceras attenuatum (Hyatt, 1903). Reproduction of the original specimen of Hyatt (1903, pl. 17, figs. 13-14).

Diagnosis. Typical engonoceratid coiling with narrow umbilicus. Cross section is rather compressed and pentagonal, or oval in some species. Venter is flat to slightly concave or rounded in adult stage. Ornamentation consists of rather strong, sometimes coarse prorsiradiate ribs, which may originate at the umbilical shoulder from bullae. Ventrolaterally bullae may also appear. Suture consists of many adventive and auxiliary elements. Relative breadth of saddles and lobes are similar. Saddles are bifid, lobes are finely frilled.

Occurrence. Glottoceras (sensu Robert, 2002) is restricted to the Albian of South America.

Included species:

Remarks. Benavides-Cáceres (1956, p. 449) had already pointed out that South American 'Knemiceras' are different from the Knemiceras attenuatum described by Basse (1940). On the basis of Art. 23.9 of ICZN (1999), Robert (2002) resurrected Glottoceras to group the South American species of Knemiceras. Robert (2002) and Robert & Bulot (2004, p. 20) consider the genus Glottoceras to be restricted to these Andean species. In the assignment of species to this group, Knemiceras andinum Renz must be included in Glottoceras if the rationale of Robert & Bulot (2004, p. 20) is accepted.

Genus Engonoceras Neumayr & Uhlig, 1881, p. 140
= Engonhoplitoides Basse, 1940, p. 441; Epigonoceras Packard, 1956, p. 400

(Fig. 2 )

Type species. Ammonites pierdenalis Buch, 1848, from the Cretaceous of Fredericksburg, Texas.

Click on thumbnail to enlarge the image.

Figure 2: Engonoceras pierdenalis (Buch, 1848). Reproduction of the original figure of Buch (1848, p. 31, pl. 6, figs. 8-10).

Diagnosis. Diagnosis is after Wright et alii (1996, p. 130): "Involute, inner whorls very compressed with narrow, flat or sulcate venter; later flexuous striae normally repeated by weak, flat, flexuous or straight ribs ending in small ventrolateral clavi placed alternately and, in some shells, joined across venter by zigzagging ribs; umbilical and lateral tubercles may be present, and venter of last whorl may be rounded. Suture with more elements than Knemiceras and with saddles normally all entire except that outermost are bifid; external lobe normally with strongly divergent branches."

Occurrence. Engonoceras is widespread in its distribution. It is abundant with many species in North America (Colorado, Kansas, New Mexico, Oregon, Texas) and in Mexico (Sonora) and South America (Colombia, Peru) but also in the Tethys: North Africa (Algeria, Morocco, Tunisia), the Near East (Lebanon, Syria) and Asia (Borneo). It is also reported from Europe (England). Stratigraphically it ranges from the Early Albian to the Middle Cenomanian.

Included species:

Remarks. Although Buch (1848, pl. 6, fig. 10) in his description of the type species indicates that all the saddles of the suture are bifid: "the saddle is rounded, however with one small secondary lobe in the middle", subsequent designations refer to entire or nearly entire saddles with only one bifid element being typical for Engonoceras (Wright et alii, 1996; Kennedy et alii, 1998a, p. 5). According to Benavides-Cáceres (1956, p. 444) most species of Engonoceras have sutures with entire saddles and are ornamented with three or two rows of tubercles. In some species (e.g. E. complicatum) there are more (up to five) bifid or sometimes trifid saddles (E. elegans). Saddles are generally rounded, lobal necks are narrow. Saddles are always broader than lobes. Basse (1940, p. 441) established Engonhoplitoides on the basis of the subdivision of the lateral lobe of the suture line, remarking that the shell morphology of Engonhoplitoides is closer to that of Engonoceras, while its suture line is more nearly like that of Knemiceras. This separation was discredited by Wright et alii (1996).

Genus Neolobites Fischer, 1882, p. 389

(Fig. 3 )

Type species. Ammonites Vibrayeanus d'Orbigny, 1841, p. 322, from the Cretaceous of Sarthe (France).

Click on thumbnail to enlarge the image.

Figure 3: Neolobites vibrayeanus (d'Orbigny, 1841). Reproduction of the original figure of d'Orbigny (1841, p. 322, pl. 96, figs. 1-3).

Diagnosis. Highly variable, oxycone and lanceolate engonoceratid, with small, shallow umbilicus. Suture is extremely simplified consisting of rounded, narrow lobes and wide rounded saddles. Cross section is variable from compressed to slightly inflated. Venter is variable from wide to narrow trapezoidal or simply rounded and in some species ornamented by fine crenulations. Sculpture is variable, too, ranging from smooth, unornamented forms to flexuous and ventrally ornamented forms.

Occurrence. Neolobites is restricted to the Middle (N. fourtaui) and Late (N. vibrayeanus) Cenomanian being a successful shallow marine taxon among Engonoceratidae. The genus is characterized by distinct morphotypes and populations in the Tethyan Realm and seamingly preferred lower latitudes and subtropical/tropical settings (Wiese & Schulze, 2005, p. 942). It is reported from South America (Bolivia, Colombia, Peru, and Venezuela), Africa (Algeria, Egypt, Libya, Morocco, Niger, and Tunisia), Europe (France, Portugal, and Spain), and the Near and Middle East (Israel, Jordan, Lebanon, Oman, and Syria).

Included species:

Remarks. Wiese & Schulze (2005) stated that only N. vibrayeanus, N. fourtaui and N. peroni deserve discrete specific status. Kennedy et alii (1981, p. 28) convincingly ruled out N. bedoti from Neolobites. It was placed in Metengonoceras (Meister et alii, 1992). Reported new species are based on fragmented and worn specimens. Therefore the sculpture and suture appear to be simplified (e.g. N. bassleri, N. kummeli). Kennedy & Juignet (1981, p. 24) argued that N. peroni is also no more than an intraspecific variety of N. vibrayeanus. Wiese and Schulze (2005) did not discuss the earlier authors' opinion, but maintain N. peroni as a distinct species based on slight morphological differences between N. vibrayeanus and N. peroni. Taking into consideration the extreme morphological variety of the populations of Neolobites, the present author accepts the opinion of Kennedy & Juignet (1981) on N. peroni, and considers this species an intraspecific variety of N. vibrayeanus. It is possible that N. fourtaui will also be found to fall into the intraspecific range of N. vibrayeanus, especially taking into consideration the eco-morphological analysis of Wiese & Schulze (2005). The other possibility, that future research will elucidate, is that N. fourtaui and N. vibrayeanus form two discrete chronospecies, namely N. fourtaui is older and N. vibrayeanus is younger. The Early Cenomanian N. bedoti of Grossouvre (1912, p. 31) has been assigned to Metengonoceras by Kennedy & Juignet (1984, p. 105) because of the very similar morphologies of Neolobites and Metengonoceras. Based on these similarities, the most probable ancestor of Neolobites is Metengonoceras (Lehmann & Murphy, 2001).

Genus Knemiceras Böhm, 1898, p. 200
= Cnemidoceras Haug, 1900, p. 24; Cnemioceras Haug, 1900, p. 85; Knemoceras Krause, 1902, p. 7;
Omaimaiceras Mahmoud, 1955; Iranoknemiceras Collignon, 1981, p. 258

(Figs. 4 - 5 )

Type species. Ammonites Syriacus Buch, 1848, from the Neocomian of Lebanon

Click on thumbnail to enlarge the image.

Figure 4: Knemiceras syriacum (Buch, 1848). Reproduction of the original figure of Buch (1848, p. 21, pl. 6, figs. 1-3).

Diagnosis. Diagnosis is after Wright et alii (1996, p. 130): "compressed to moderately inflated; sides flat and parallel or converging; venter flat or slightly concave; ribs moderately to very strong, sparse, rounded or flat, arising singly or in pairs from stout umbilical tubercles; ending in ventrolateral clavi or crossing venter. Suture with frilled lobes and slightly frilled, rarely entire saddles; commonly irregular."

Click on thumbnail to enlarge the image.

Figure 5: Highly variable cross sections of Knemiceras species. A.) K. compressum (Hyatt, 1903, pl. 16, fig. 16); B.) K. compressum (Renz, 1970, text-fig. 9c); C.) K. subcompressum (Geyer et alii, 1997, fig. 2f); D.) K. kazhdumiense (Collignon, 1981, pl. 3, fig. 1c); E.) K. douvillei (Collignon, 1981, pl. 4, fig. 1b); F.) K. persicum (Collignon, 1981, pl. 5, fig. 1b).

Occurrence. Separation of South American forms of Knemiceras as Glottoceras by Robert (2002) does not restrict the geographic distribution of the remaining Knemiceras species, which are reported from Europe (France, Portugal, Spain), North Africa (Algeria, Egypt, Tunisia), Near East (Israel, Lebanon, Syria), Middle East (Iraq, Iran, Oman), and also from South America (Colombia, Peru). Stratigraphically, Knemiceras appears in the earliest Albian (?latest Aptian) and disappears in the Early Cenomanian.

Included species:

Remarks. Resurrection of Glottoceras by Robert (2002) did not solve the systematic uncertainties around Knemiceras. He considered the genus to be a geographical variant and leaves open the problem of the systematic position of the remaining Knemiceras species (e.g. K. attenuatum spinosum from Australia: Wright, 1963). Other occurrences of 'Knemiceras' attenuatum from Tunisia (Arnould-Saget, 1956, pl. 2, fig. 3a-b) and Iran (Collignon, 1981, pl. 6, fig. 2) should be convincingly placed somewhere in the Engonoceratidae. Klinger & Kennedy (1989, p. 364) proposed that Hypengonoceras ibericum be placed in Knemiceras on the basis that quadrituberculate ornament is unknown in Hypengonoceras. Bifid (e.g. K. compressum, K. subcompressum) or irregular (K. douvillei, K. iraniense) saddles are present in the suture line at any growth stage, distinguishing all Knemiceras species from Engonoceras and Platiknemiceras. The extreme intraspecific variation seen in Knemiceras (Klinger & Kennedy, 1989, p. 383) especially in its inflation and ornamentation (Reyment & Kennedy, 1991) is easily observable in the cross- sections of the body chambers of various species (Fig. 5). Cross-sections of Knemiceras range from the slender lanceolate forms (K. compressum) through wider (K. kazhdumiense, K. subcompressum) and subcircular (K. douvillei) and rectangular (K. persicum) forms. Casey (1961) decreased this great variation within the genus by distinguishing the thin, unsculptured and less ornamented forms as Platiknemiceras. The extreme variability of shell morphology of Knemiceras may have been linked to the mode of life.

Genus Protengonoceras Hyatt, 1903, p. 153

(Fig. 6 )

Type species. Engonoceras Gabbi Böhm, 1898, p. 197, from the Cretaceous of Texas (USA).

Click on thumbnail to enlarge the image.

Figure 6: Protengonoceras gabbi (Böhm, 1898). Reproduction of the original specimen of Böhm (1898, p. 197).

Diagnosis. Diagnosis is after Wright et alii (1996) and Kennedy et alii (1998a). Conch is like Engonoceras but lacks tubercles at any stage and has feeble, smooth ribs only on adult stage. Cross section is compressed to very compressed and tabulate or may be rounded at adult stage. Where ventrolateral shoulder is present, it is always sharp. The suture line is almost straight and consists of many low adventive saddles, which are entire. Adventicious lobes are narrow and incised.

Occurrence. Protengonoceras is reported from the Early and Middle Albian of Peru, Texas, Mexico and Egypt. Collignon (1981) reported two species from the latest Albian and earliest Cenomanian of Iran.

Included species:

Remarks. Hyatt (1903, p. 157) referred Cragin's Sphenodiscus emarginatus to both Protengonoceras and Engonoceras. Without detailed description it can only be considered a nomen nudum so cannot be maintained. Hyatt (1903, p. 157) referred to this ambiguity: "not having seen any specimens of the species, I can not say positively that it is a member of this genus", therefore this reference is omitted. Collignon (1981) reported two new species from the Late Albian-Early Cenomanian of Iran. However, all other species are reported from the Early and Middle Albian, and no occurrences are known from the Late Albian or younger. Collignon (1981) introduced P. prestati possessing well preserved dorsolateral and lateral bullae and a suture line with bifid saddles typical of Knemiceras. Protengonoceras lacks tubercles and never presents bifid and/or incised saddles. On that basis, P. prestati belongs rather to Knemiceras; however the single figured specimen (Collignon, 1981, pl. 6, fig. 3a-b) does not permit a reliable revision.

Genus Metengonoceras Hyatt, 1903, p. 179
= Epengonoceras Spath, 1924, p. 508

(Fig. 7 )

Type species. Metengonoceras inscriptum Hyatt, 1903, from the Albian of Decatur, Texas.

Click on thumbnail to enlarge the image.

Figure 7: Metengonoceras inscriptum Hyatt, 1903. Reproduction of the original figure of Hyatt (1903: p. 180, pl. 25, figs. 5-9).

Diagnosis. Diagnosis is after Cobban (1987, p. C2). Metengonoceras includes very compressed, almost smooth ammonites having very narrow umbilicus and narrow, flattened venters, which may be rounded on the adult body chamber. Sculpture consists of falcoid growth lines. On some species, weak arcuate ribs appear a little above the midflank. Rarely faint umbilical bullae may appear. Suture is simplified, consisting of closely shaped numerous auxiliary and adventive elements. Most of the saddles are wide, being undivided and rounded. Larger lobes may be frilled moderately.

Occurrence. Metengonoceras occurred in the Gulf of Mexico during the Middle Albian (Cobban & Kennedy, 1989). Many species flourished in the Western Interior of the USA. Repeated speciation took place there (R.W. Scott, 2007) from which certain Metengonoceras species invaded northward (Mowry Sea, Canada) and eastward (Normandy, France). During the Cenomanian Metengonoceras enlarged its territory outside North America. It is reported from Europe (France, Germany), Africa (Algeria, Egypt, Niger, Nigeria, Tunisia), and the Middle East (Jordan) as well as from South America (Brazil, Ecuador) reached through the Saharan seaway. Metengonoceras tended to become more acute and sharply keeled during the Cenomanian.

Included species:

Remarks: Stephenson (1952) extensively reviewed the type species of Epengonoceras (E. dumbli) and concluded that the genus is not separable from Metengonoceras. This view was accepted by Kennedy & Juignet (1984, p. 100) and is also followed here. R.W. Scott (2007) reports stratigraphical ranges of engonoceratid ammonites from North America showing that certain Metengonoceras species occur in the Late Albian (M. teigenense, M. aspenanum) and Cenomanian (M. dumbli, M. acutum) suggesting that in North America Metengonoceras species range from earliest Late Albian to the latest Cenomanian.

Genus ? Hypengonoceras Spath, 1922, p. 112

(Fig. 8 )

Type species. Placenticeras Warthi Kossmat, 1895, from the Albian Utatur Group of southern India.

Click on thumbnail to enlarge the image.

Figure 8: Hypengonoceras decaryi (Collignon, 1963). Reproduction of the figures of Klinger & Kennedy (1989: figs. 112-113).

Diagnosis. Diagnosis is after Klinger & Kennedy (1989, p. 362). "Umbilicus is narrow. The shell compressed, the flanks generally little rounded. Sculpture consists of low falcoid ribs, often very weak and only visible under oblique lighting. Umbilical tubercles may be present, but are never very prominent. Venter is flat to concave with alternating ventral clavi at least at some stage. Dimorphism pronounced, but mainly restricted to differences in size. Suture variable; in typical forms some saddles are little divided and 'pincer-like' with bifid folioles; in others as incised as in a normal placenticeratid pattern."

Occurrence. Hypengonoceras is reported from the Late Albian of Europe (France), Africa (Madagascar, Morocco, Mozambique, Zululand), Near East (Israel), India, and probably Sakhalin (Japan). Ayyasami & Banerji (1984, Table 1) noted a doubtful occurrence in the Late Cenomanian of the Utatur Group, South India but they did not figure or describe it, so this occurrence is omitted.

Included species:

Remarks. Although Klinger & Kennedy (1989) indicated the placenticeratid-like pattern of the suture of Hypengonoceras, they assigned the genus to the Engonoceratidae. This clearly relates to the debate on the systematic position of Hypengonoceras for it is the most disputed among the Engonoceratidae and is again under reconsideration (Robert & Bulot, 2004). This continuing dispute is based on the general differences between the Engonoceratidae and the Placenticeratidae. The Engonoceratidae are characterized by simplified ceratitic saddles (best seen on all species of Protengonoceras, Engonoceras, Metengonoceras, and Neolobites) in contrast to the frilled and finely incised saddles and lobes of Placenticeratidae. In this scheme, Parengonoceras and Hypengonoceras are transitional between the Engonoceratidae and the Placenticeratidae (Klinger & Kennedy, 1989, p. 364); however the first-named genus was placed in the Engonoceratidae without dispute - partly because of its known stratigraphical distribution (Early and Middle Albian) and because Parengonoceras possesses two true adventive lobes (Renz, 1970). Only H. ibericum is questioned as a member of the genus by Klinger & Kennedy (1989, p. 364) because quadrituberculate ornament is unknown in Hypengonoceras. They proposed that H. ibericum be placed in Knemiceras. Since the thorough discussion of Hypengonoceras by Klinger & Kennedy (1989) no significant progress toward clarifying the position of the genus has been published; therefore the opinion of Klinger & Kennedy (1989) is maintained here.

Genus Parengonoceras Spath, 1924, p. 508

(Fig. 9 )

Type species. Amaltheus Ebrayi Loriol, 1882, from the Albian of Cosne, Nièvre, France.

Click on thumbnail to enlarge the image.

Figure 9: Parengonoceras ebrayi (Loriol, 1882). Reproduction of the original figure of Loriol (1882, p. 7, pl. 1).

Diagnosis. Coiling is typically engonoceratid. Conch is evolute. At early stages the cross section is lanceolate with tabulate venter. The lanceolate cross-section varies between wide triangular to acute and compressed. At adult stage the cross-section remains lanceolate or becomes oval. Venter is smooth or slightly grooved. Umbilical shoulder is low and always rounded and unornamented. Flanks are smooth in most cases or ornamented by ventrolateral, lateral or dorsolateral bullae. Falcoid ribs may appear ventrolaterally. Venter is usually narrow or in some species wide at adult stage and ornamented by weak tubercles. In some species these tubercles develop strongly. Suture line consists of two adventive and many auxiliary elements. Lobes are always irregularly incised. Saddles are never entire, always weakly or strongly incised.

Occurrence. Although Parengonoceras is widely considered to be restricted to the Early and Middle Albian (Klinger & Kennedy, 1989, p. 365; Wright et alii, 1996, p. 130), many species (mainly South American) are reported from the Late Albian (P. barbacoense, P. caneroti, P. discoides, P. duplicatum, P. elegans). Furthermore, in Europe and Asia it is also known from the Late Albian (P. zagrosiense). Based on our recent knowledge, the stratigraphical distribution of Parengonoceras spans the whole of the Albian.

Included species:

Remarks. In his accurate analysis, Renz (1970, p. 1030-1032) examined the sutural development of Parengonoceras during ontogeny, proving that it has two distinct adventive lobes. Parengonoceras has the most complex suture lines among the Early and Middle Albian Engonoceratidae with irregularly and finely frilled deep lobes and saddles. This suture line is distinctive among other Early and Middle Albian engonoceratid ammonites and is considered to be the forerunner of the suture seen in Hypengonoceras and therefore, a phylogenetic connection exists between these genera. All species of Parengonoceras have rather compressed and smoothly ornamented shells (although fine tubercles may appear on flanks) with frilled suture, which clearly distinguish them from all other genera of Albian and Cenomanian engonoceratids. The proposed Parengonoceras - Hypengonoceras lineage and the suture remarkably different from those of other engonoceratid species suggest a polyphyletic origin for the Engonoceratidae.

Genus Platiknemiceras Bataller, 1954, p. 174
= Platyknemiceras Bataller, 1959, p. 77

(Fig. 10 )

Type species. Platiknemiceras bassei Bataller, 1954, from the Albian of Spain.

Click on thumbnail to enlarge the image.

Figure 10: Platiknemiceras bassei Bataller, 1954. Reproduction of the figure of Basse (1954, p. 175, refigured by Casey, 1961).

Diagnosis. Diagnosis is after Bataller (1954, p. 175). Discoidal shape, flanks convex in the middle, being widest next to umbilicus, which is narrow. Umbilical wall is vertical, the last whorl almost entirely embracing. Sculpture is reduced consisting of attenuated ribs that arise at the umbilicus. Ribs may be flexuous in course but not tuberculate. Venter is smooth and forms a shallow groove. Suture is ceratitic.

Occurrence. Platiknemiceras appears in the Early Albian. Most species occur in Early-Middle Albian and some range into the Late Albian (P. deserti, P. jullieni) and higher, into the earliest Cenomanian (P. valencianum). Geographically the genus is reported from Europe (Spain, France), Africa (Algeria, Egypt), South America (Colombia, Peru), North America (Texas, USA), the Middle East (Iran) and Japan.

Included species:

Remarks. Casey (1961) discussed the genus thoroughly and grouped some species of Knemiceras (K. deserti, K. gracile, K. hachourii, K. subcomplicatum, and K. sp. nov. [later described as P. flexuosum Kennedy et alii, 1998a]), and Engonoceras (E. jullieni) under Platiknemiceras because of common morphological features: thinly discoidal shape with extreme reduction of ornamentation; this grouping restricts the scope of the genus Knemiceras. Platiknemiceras is close to Parengonoceras (Casey, 1961, p. 354) but it includes only compressed and discoidal forms having extremely reduced sculpture. P. caseyi sp. nov. was listed previously (Matsumoto, 1954; Matsumoto & Kanmera, 1964) as Engonoceras aff. stolleyi (Böhm), an attribution corrected by Matsumoto et alii (1980, p. 334). Since Casey (1961) revised the genus there have been no further contributions regarding the content and systematics of the taxon; however four new species have been described. Most recently Bulot (2010, p. 171) discussed the species assigned of Platiknemiceras. He considers the genus to be restricted to P. bassei, P. hachourii, and P. flexuosum. Bulot (2010) transfers back to Knemiceras some of the species that Casey (1961) referred to Platiknemiceras (P. gracile, P. subcomplicatum, and P. deserti). Unfortunately, Bulot (2010) did not consider the other five species (P. caseyi, P. colombiana, P. julieni, P. sequanense, and P. valencianum) of the genus so his revision is not complete. For the moment this genus is considered to be polyphyletic for it is based on morphological features common to all.

[Engonoceratidae gen. et sp. nov. Henderson, 1973
= Borissiakoceras sp. (Stilwell & Gallagher, 2009, p. 881)]

This tiny specimen is reported from the Albian of New Zealand (Henderson, 1973, p. 106). The specimen is not strongly evolute (two whorls are visible) atypical for Engonoceratidae. Nor is the suture is typical of Engonoceratidae: therefore the generic assignment is not supported. Kennedy & Klinger (1979, p. 116) had already referred it to Borissiakoceras, but without further analysis. This was provided by Stilwell & Gallagher (2009) who also assigned it to Borissiakoceras. However poor preservation and a limited number of specimens do not permit a more precise distinction.

Geographical and stratigraphical distribution of Engonoceratidae

The mean generic range of Jurassic/Cretaceous ammonites is 7.3 myr per ammonite genus (Ward & Signor, 1983). Engonoceratid genera have longer ranges. The longevity of most of the genera is remarkable: seven genera existed for more than 10 myr (Engonoceras, Glottoceras, Knemiceras, Metengonoceras, Parengonoceras, Platiknemiceras, and Protengonoceras). Only two genera (Hypengonoceras and Neolobites) had shorter ranges (4 myr) than the average mean generic range. Originally the Engonoceratidae were said to have appeared during the Barremian (Roman, 1938, p. 486), but later works did not support this view. Now it is widely accepted that engonoceratids appeared in the latest Aptian-earliest Albian (Arnould-Saget, 1956; Collignon, 1981; Bulot, 2010) in shallow marine platform environments of the southern Tethys (Algeria) and migrated to the peri-Tethyan territories (Casey, 1957; Destombes, 1965). It is noteworthy that G. Scott (1940b, p. 1066) had already speculated that some engonoceratids possibly were present in the Aptian of Texas, an observation supported by Kennedy et alii (2004) when revising the original collection of Ferdinand Römer, that included an Engonoceras sp. from the ?Upper Aptian of Texas. Obviously, the adaptive radiation of the group was rapid during the Early Albian, for its genera played an important role in the faunas of the Peruvian Basin (South America) and the Western Interior Sea (USA). During Middle and Late Albian times the group occupied the Far East and Australian provinces (Australia, Borneo, India, Japan, Madagascar and South Africa).

In the Cenomanian it successfully invaded some portions of the Boreal Realm (Mowry Sea, Canada) for it became ubiquitous in temperate watery environments everywhere in palaeolatitudes up to the 60 degrees where it co-occurs with Boreal ammonites (Iba, 2009). In the Mowry Sea the adaptive radiation of engonoceratid ammonites was so successful that the invader Metengonoceras displaced the endemic Neogastroplites from its original morphoplace (Yacobucci, 2004) as recorded by changes in its morphotypes (Schluter, 2000). The taxon became extinct during the Cenomanian. The last surviving species of the engonoceratids are reported from the latest Cenomanian of Texas (Kennedy et alii, 1981), Niger and Nigeria (Meister et alii, 1992, 1994; Courville et alii, 1998) and the southern Mediterranean (Meister & Abdallah, 2005; Courville, 2007; Aly et alii, 2008). Table 1 summarizes the stratigraphical ranges of engonoceratid genera. Although Furon (1935) reported a Metengonoceras dumbli from the Early Turonian of Niger, this dating is not supported by the detailed biostratigraphical study of Meister et alii (1992), which showed that M. dumbli ranges only to the latest Cenomanian in Niger. The general climate warming of the mid-Cretaceous combined with an increase in subtropical upper ocean temperature (Pucéat et alii, 2003), may have helped the radiation of engonoceratids along ancient continental shelf seas. Changes in sea level may be an additional favourable factor. The highest relative sea level documented occurred during the Mesozoic (Monnet et alii, 2003a). These fluctuations may have been accompanied by changes in the oceanic circulation that aided in increasing productivity and opened new ecological niches, which together resulted in a decline of provincialism in epicontinental seas. Some of these factors may have contributed to a general decline of ammonoid diversity (Monnet et alii, 2003a, p. 395). However, the well documented decrease in the richness of ammonoid species significantly pre-dates the spread of anoxic deposits (Monnet et alii, 2003b) and surely contributed to the dramatic changes of shallow water habitats that were preferred by engonoceratids, that in the end may have led to their extinction. "Suddenly" raised sea levels would have reduced the number of barriers between those epicontinental and shallow water habitats and endemic centres in which engonoceratids lived.

Mode of life and ecology of Engonoceratidae

Based on our recent knowledge, all engonoceratid genera preferred shallow marine environments, and some (Knemiceras and Neolobites) occupied extremely shallow (tidal, lagoonal) milieux. However, it took a long time to arrive at this conclusion, which began seventy years ago.

Ecology and facies dependency of Engonoceratidae

G. Scott (1940a) was among the first to discuss the growing importance of palaeoecology, pointing out that only oxyconic ammonites (as Engonoceras and Oxytropidoceras) are numerous in the epineritic area of the Cretaceous of Texas (Western Interior Sea, USA) where echinoids, oysters, and thick-shelled gastropods abundant. G. Scott (1940a) estimated the epineritic zone to occupy water depths of 40 to 180 metres, which corresponds well with the lower limit of the euphotic zone. G. Scott (1940b, p. 1066) considered that the group preferred shallow water and platform facies: "Knemiceras, Engonoceras and Oxytropidoceras appear to have had their greatest development in the broad, shallow, clear seas of Texas". The habitat-dependency of ammonites was also analyzed by Batt (1991) for the Cenomanian-Turonian ammonites of the Western Interior. It became obvious that most ammonites are not restricted to a particular depth or facies, although compressed and discoidal forms (e.g. the Engonoceratidae) tended to occur in environments where the depth was less than 50 to 100 metres (Yacobucci, 2003). Kauffman (1984) also analyzed thoroughly the Western Interior basin, its endemism and faunal provinces concluding that during the Cretaceous the maximum depth of thebasin was never greater than 200-500 metres with a significant area covered by less than a 50 metres. This shallow, warm, trophic environment offered excellent conditions for speciation among many ammonites (including engonoceratids) thus creating an endemic centre (Young, 1972). Based on his extensive research on bivalves, Kauffman (1973) defined a Western Interior Endemic Centre (WIEC). Later Kauffman et alii (1993) enlarged the scope of the WIEC to include other molluscs emphasizing that the WIEC was a very important pool of genetic variability and speciation for many molluscs. This direct link between the water depth and the blossoming of the engonoceratids is remarkable. Its validity supported by Westermann (1990, 1996) who from a theoretical standpoint pointed out the special ecological needs of engonoceratids and that they preferred shallow (30-50 metres) water. Ecology of the South American Engonoceratidae was first discussed by Renz (1970, p. 1022) concluding that the South American Engonoceratidae lived on a subsiding carbonate platform. Geyer (1995a) also recognized the importance of engonoceratids in shallow marine facies: "Knemiceratinae (Knemiceras, Platiknemiceras, Parengonoceras) represent important ammonoid "pioneer" genera for mid-Cretaceous transgressive facies: they occur frequently near the base of marine, often glauconitic sediments overlying a continental clastic succession in their Tethyan (s.l.) realm." Engonoceratids frequently occur in glauconitic sediments. Parengonoceras duboisi and Knemiceras saadense are present in the glauconitic sand/sandstone of Salazac (Gard, France: Breistroffer, 1940; Latil, 1989) and in the latest Albian glauconitic limestone of Pénzesgyor (Bakony Mts. Hungary; Bujtor, 1990a, 1990b), furthermore Parengonoceras attenuatum spinosum of Wright (1963) from the Early Albian of Bathurst Island (Australia) is found in a glauconite sand. Kennedy et alii (1981) reported an engonoceratid (Metengonoceras dumbli) from the Late Cenomanian of stable Europe (Angers, NW France), also in a glauconitic sand. Amireh (1997) noted a Knemiceras from a glauconite bed in the Albian of Jordan. Canérot & Collignon (1981) described Parengonoceras caneroti from a lignitic deltaic series of latest Albian age at Castellon (Spain). This occurrence also supports the shallow water dependency of engonoceratids. Although Accarie & Delamette (1991) considered engonoceratid ammonites to be indicative of a neritic environment they did not discuss their shallow water dependency.

Shallow marine specialist Knemiceras and Neolobites

It became obvious very early on, that the presence of some engonoceratids may be indicative of certain environments. Hyatt (1903, p. 148) called attention to the ostreid and bryozoid encrustations of Knemiceras syriacum shells. More recently Reyment (2008) too discussed shell encrustations on Knemiceras found in fluvial, deltaic, littoral or sublittoral facies. The encrustation may have occurred during post-mortem drifting, rather than during life in natural habitats. However, Kennedy & Cobban (1976) and Page (1996) found that the post-mortem dispersal of ammonoids is rather the exception than the rule. This finding is very probably applicable to Knemiceras. Accepted as a generalization, nekroplanktonic dispersal on a large scale must be abandoned; a Knemiceras from the Albian of Jordan with oyster encrustation (Reyment, 2008) makes very likely the probability of a shallow water habitat. Haile (1955) pointed out that the Knemoceras [sic!] beds are linked to basal conglomerate in Borneo. Canérot et alii (1986) remarked that various species of Knemiceras occur in a littoral facies of the southern Atlas Mountains, Africa. Geyer et alii (1997) report Knemiceras from a delta-influenced carbonate ramp in the Albian of Sinai (Egypt), again supporting the conclusion that many occurrences of Knemiceras are coincident with the early stages of transgressive systems tracts. Krassilov & Shuklina (2008) report Knemiceras from intercalated non-marine-shallow marine beds of Middle Albian age in Israel. Knemiceras uhligi from the Albian of Oman occurs in a shallow marine (average depth 35 metres) epicontinental sea, which might not have been more than 80 metres deep (Immenhauser et alii, 2000, p. 223). But (Abdallah & Memmi, 1994; Zouaghi et alii, 2009) report that Late Albian 'Knemiceras beds' in Tunisia involve a unique range of ecological needs. Arnould-Saget (1956) began the attempts to explain the ecology of the highly variable Knemiceras. She postulated that as Knemiceras lived in a stable environment in the neritic zone at the margin of the old Saharan mainland where there was no deposition of detritus or perturbation, so conditions there were optimum for the rapid expansion of its population, and the stress that would have hindered adaptation did not exist. Consequently, the genetic potential and variability of Knemiceras was wasted in useless polymorphism. Arnould-Saget (1956) said that the mode of life of Knemiceras species was more benthic than neritic. She outlined a completely opposing view of the mode of life and habitats of Knemiceras and other engonoceratids. Reyment & Kennedy (1991) proposed that the great variability of shell form and ornamentation can be explained by their inhabintance of a shallow and labile (= epicontinental) environment. Recently Shirazi (2008) reported Knemiceras from the euphotic, shallow marine deposits of Late Albian age in the Zagros Mountain (SW Iran). Again it is the only ammonite found in that shallow marine environment. The shallow water dependency of Knemiceras is supported by the frequent presence of Knemiceras on shallow marine platforms (Abdallah & Memmi, 1994) and in fluvial-lagoonal deposits with dinosaur remnants (Benton et alii, 2000). Generally, Knemiceras is the only ammonite in shallow water environments of the Arabian Plate (Bulot, 2010). Dinosaur experts also remark that during Cenomanian times the fragmented dinosaur remains found in continental and deltaic facies followed by lagoonal and coastal plain deposits topped by marine limestones containing the first truly marine animals such as Neolobites (Novas et alii, 2005, p. 168). Wiese & Schulze (2005) noted that where Neolobites occurs in great abundance, it is on shallow-marine shelves. Neolobites is always linked to transgression and/or flooding periods in South-America (Jaillard & Arnaud-Vanneau, 1993, p. 600). Distribution of Cenomanian carbonate platforms and Neolobites occurrences are correlated to a fine degree in northern Africa and the Americas (Jaillard & Arnaud-Vanneau, 1993). The possible shallow marine dependency of Engonoceratidae is strongly supprted by Bulot (2007) who considers Neolobites as the endemic and intra-shelf taxon of the group. That Neolobites is a Cenomanian intra-shelf (e.g. shallow marine) taxon is strong support for the same mode of life for its predecessor, the Albian engonoceratids; however the Neolobites in Bolivia (Branisa, 1968; Jaillard & Sempere, 1992) does not support its endemism at the genus level.

Explanation of pioneerism of engonoceratid ammonites

With regard to the dispersal of Ammonoidea, Shigeta (1993) analyzed the post-hatching early life of 71 selected Cretaceous species of Ammonoidea. He concluded (based on density calculations of the shells), that at the hatching stage most of them were floaters with a positive buoyancy, strongly suggestive of a planktonic mode of life, thus permitting the rapid migration of all Cretaceous Ammonoidea. But positive buoyancy cannot explain the shallow water dependency of all engonoceratids, a relationship strengthened by González-León's (1988) report of well preserved and abundant engonoceratid fauna (Parengonoceras, Protengonoceras, Engonoceras pierdenalis, E. stolleyi, and E. uddeni) from the Middle Albian open shelf of Lampazos, Sonora (Mexico). Collignon (1981) offered an interesting working hypothesis to explain the connection between the distribution of engonoceratids and the depth of seas in which they occur. He noted that thin forms [of engonoceratids] are found in the western regions and the thickest in eastern areas. This difference would suggest some regional control in the depth of the seas. But recent knowledge of the geographical and facies distribution of engonoceratids, negates this idea. Thin forms are found in the Far East (Platiknemiceras caseyi in the Early Albian of Japan (Matsumoto et alii, 1980).

Some Upper Albian ammonoid habitats in southeastern France were reviewed by Reboulet et alii (2005). But this work did not discussed the habitats of the engonoceratids, although engonoceratids occur in that region (cf. Breistroffer, 1940; Latil, 1989). Based on the available data engonoceratids certainly lived in the neritic and epipelagic domain of Reboulet et alii (2005) occupying extremely shallow marine habitats. But we have more evidence for the connection between transgression and the rapid distribution of engonoceratids. The "pioneerism" of engonoceratids sensu Geyer (1995a) is linked to their shallow water habitancy, for the colonizing populations of engonoceratids were able to occupy rapidly the new areas of shallow water formed by transgressive seas, and thus to inhabit pristine ecological niches. The invasion of engonoceratids into the Peruvian province (Robert & Bulot, 2004) is closely linked to a transgression. In Early Albian times, the stem-engonoceratids which originated at the southern margin of the Tethys invaded the Peruvian Basin using shallow water seaways. A similar event occurred during the Cenomanian. Courville (2007) following up on earlier works noted that the Cenomanian shallow water seaway between the southern margin of the Tethys and South America (Saharan seaway), Metengonoceras migrated southward during latest Cenomanian times (Courville, 2007, fig. 1). Furon (1935) and Meister et alii (1992) had already reported this southward advance on the Late Cenomanian deposits of Niger. The appearance of M. oliveirai in Sergipe, Brazil (Brito, 1967, 1986; Simone, 1994) substantiates this southward migration of the seaway.


Roman (1938, p. 510) attempted to erect a phylogeny of Engonoceratidae, proposing that the first engonoceratid was the Aptian Protengonoceras with no direct link to other engonoceratids. The first Albian engonoceratid genus was Engonoceras and its offsprings were Metengonoceras, Parengonoceras, Hoplitoides, Knemiceras, Neolobites, and Placenticeras. Wright (1952) suggested that in all probability, the Engonoceratidae were derived directly from the Parahoplitidae. Casey (1957, p. 39) proposed that if the pseudoceratitic development of the Albian species is indeed the expression of a development from the deshayesitid lineage, then the superfamily name Placenticeratoidea of Hyatt (1900, p. 584) would be applicable. Summarizing the earlier results, Casey (1960, p. 208) concluded: "origin of the Engonoceratidae has never been settled." Since that statement, there has been no significant development concerning the origin of the engonoceratids. Almost forty years later, the situation is unaltered from the state that Kennedy et alii (1998a, p. 1) remarked: "evolutionary origin of the group is uncertain". Recently Lehmann & Murphy (2001) outlined a phylogenetic chart for Engonoceratidae proposing that the most possible ancestor was Knemiceras (Lehmann & Murphy, 2001, fig. 2) with a questioned relation between Parengonoceras/Hypengonoceras and the rest of the group. So uncertainty remains an open field for investigation.

Speculation on the origin of Engonoceratidae and its possible parahoplitid origin now is strengthened by new results on the ecology of Parahoplites. Lehmann et alii (2009, p. 904) report Parahoplites from a lagoonal environment in north-central Tunisia. In addition to the shallow marine habitat of Parahoplites, Bulot et alii (2005) proposed that the relationship of the mode of life of the Acanthohoplitinae to the water surface (incl. Parahoplites) supports the probability of a relationship. The similarities of the environments of Parahoplites and Engonoceratidae furnish a plausible explanation for the origin of the Engonoceratidae.

Recently, Robert & Bulot (2004) and Latil (2008) placed the Engonoceratidae in the superfamily Pulchelliatoidea based on morphological analogies. However, the ecological data on Pulchelliidae sensu stricto do not fully support this lineage. Recently Barragán-Manzo et alii (2004) proposed a nektobenthic mode of life for the Pulchelliidae. If the Engonoceratidae is in fact derived from the Pulchelliidae, then their differences in modes of life and palaeoenvironments require an explanation. Other data (Barragán-Manzo et alii, 2008) also refer to neritic platform environment with an abundant pulchelliid fauna. Very recently Bulot (2010) rejected the pulchelliatoid origin for the Engonoceratidae.

A search for the evolutionary driving force behind the genesis of the Engonoceratidae suggests that the global oceanic anoxic event offers a plausible explanation. Dramatic changes in the pelagic ecosystem may have been triggered by the long anoxic event (OAE 1b) and progressively increased ecological pressure on those ammonite populations inhabiting shallow marine and platform environments. They were forced to occupy pristine extremely shallow ecological niches, previously unused. The evolution of the supposed parahoplitid ancestors continued apace and the first Engonoceratidae (Knemiceras, Platiknemiceras, Parengonoceras, and Protengonoceras) appeared in the latest Aptian-earliest Albian times in the shallow water environments of one or all three large shelves in North Africa, the proto-Gulf of Mexico, and the Caribbean Province.

Click on thumbnail to enlarge the image.

Figure 11: Stratigraphical distribution of engonoceratid genera and supposed phylogeny of Engonoceratidae. Data from Roman (1938), Casey (1960, 1961), Klinger & Kennedy (1989), Wright et alii (1996), Robert & Bulot (2004). Cretaceous time-scale after Gradstein et alii (2004). OAE 1b-d dating from Takashima et alii (2006), OAE 2 dating from Bralower et alii (1999). Seawater temperature curve from Pucéat et alii (2003).

The origin of Engonoceratidae is almost certainly polyphyletic as indicated by the remarkable differences between the sutures of Parengonoceras - Hypengonoceras and those of the remainder of the group, along with the apparently contemporaneous occurrences of these species in shallow marine environments in both Americas and North Africa. However, the enigma of the systematic position of Hypengonoceras, the most problematic genus of the Engonoceratidae may also be the result of a polyphyletic origin. Kennedy & Wright (1983, p. 868) suggested that Hypengonoceras may be an off-shoot of an early Late Albian placenticeratid, but as seems more probable, Casey (1960, p. 208) proposed that Hypengonoceras was derived from Parengonoceras or some allied members of the Engonoceratidae. This uncertainty of origin is shown in Fig. 11 by the discrete tracing of possible lineages. The most probable course of evolution was from ?Parahoplites to Protengonoceras. Evolution from Protengonoceras toward Engonoceras (or from Engonoceras toward Protengonoceras proposed by Lehmann & Murphy, 2001) and Metengonoceras and ultimately Neolobites is reasonable based on shell morphology and the simplification of suture over time. Lately, Bulot (2010, p. 169) supports this concept assembles these genera into a phylogenetic lineage. The other lineage is more speculative; however Robert & Bulot (2004) suggested that the South American Engonoceratidae had a platiknemiceratid origin. But this is not a solution applicable to the other species, for a direct lineage from Parengonoceras to Hypengonoceras is feasible. Many have speculated on the existence of a direct phylogenetic connection between the Engonoceratidae and the Placenticeratidae (Spath, 1930, p. 390; Arkell et alii, 1957, p. L109), but Casey (1960, p. 208) and Klinger & Kennedy (1989, p. 365) negated the possibility that the Engonoceratidae was the direct ancestor of the Placenticeratidae. Therefore the proposed phylogenetic connection with Hypengonoceras as an off-shoot of an early placenticeratid (Kennedy & Wright, 1983) must be abandoned (Fig. 11 ). Today's opinion: the Engonoceratidae became extinct without descendants in latest Cenomanian times in the Western Interior Province (USA). However the dating of the end of the Cenomanian is debated by R.W. Scott et alii (2009), as is the closing of the Saharan seaway (Niger and Nigeria).


The apparent similarities between the engonoceratid and ceratitid suture lines tempted palaeontologists to speculate on the cause of the repetition of similar structures (cf. Smith, 1914, p. 30 on the Neolobites suture line). Recently Klug et alii (2005) analyzed the ecology and immigration patterns of approximately 500 specimens of ceratitid Ammonoidea found in strata of the Late Anisian to Early Ladinian age in Germany. Their study was based on the morphological variability of ammonoid shells. The Germanic Basin was the site of a shallow sea during most of the Anisian and Ladinian (Klug et alii, 2005, p. 19). It was occupied repeatedly by incursions of ammonoids, crinoids and brachiopods coincident with intervals of high sea level. After each of these immigrations new species of Ceratites evolved (Klug et alii, 2005, p. 25) just as we had seen among Cretaceous engonoceratids in the Peruvian Basin and in the Western Interior Sea (USA). Cretaceous species of the engonoceratids exhibit remarkable morphological convergence very likely that of the Triassic species used in the ecological analysis of Klug et alii (2005). The repetition of suture lines, external shell morphologies, together with records of a shallow marine habitat, successive migrations, and successful adaptation in both Middle Triassic and mid-Cretaceous forms suggest that this pattern is a very successful ammonoid eco-morphotype in shallow marine habitats. This conclusion is supported by the morphological convergences of the Triassic Ceratites nodosus nodosus (Klug et alii, 2005, fig. 4) and the Cretaceous Knemiceras syriacum (Buch, 1848, figs. 2-3).

Other morphological convergences occur (Fig. 12 ) among the Triassic Discoceratites semipartitus (Klug et alii, 2005, fig. 4), the Albian-Cenomanian Metengonoceras teigenense (Cobban & Kennedy, 1989, pl. 2, figs. 1-2) and the Maastrichtian Sphenodiscus pleurisepta (Ifrim et alii, 2005, fig. 7a-b). The Triassic scheme of colonization followed by speciation follows the same pattern as that of engonoceratids during the Albian. The endemic centres in the Americas were rapidly colonized by engonoceratids, followed by speciation (Robert & Bulot, 2004). This suggests that the repetition of the Triassic eco-morphotype in the engonoceratids was caused by their occupation of nearly identical ecological niches and habitats.

Another interesting convergence is that of the engonoceratids and another group of Ammonoidea, the Maastrichtian sphenodiscids. Ifrim et alii (2005) reported several species of Sphenodiscus (S. lobatus and S. pleurisepta) from the Maastrichtian of La Popa Basin, Mexico, a shallow water coastal deposit. The oxyconic Sphenodiscus was well adapted to continuous swimming with excellent acceleration skills (Jacobs & Chamberlain, 1996, p. 211). Shell morphology, suture lines and palaeoenvironments of these sphenodiscid ammonites surprisingly repeat that of the Albian-Cenomanian engonoceratids. Ifrim et alii (2005, p. 62) concluded: "sphenodiscid-dominated faunas […] are thus clearly related to bathymetry, i.e. the shallow-water assemblages are very low in diversity and represent specialization to an environment in which ammonoids could not easily survive". It seems obvious that during ammonoid evolution, the combination of shallow water habitats, the oxy- and/or platyconic, brevidome shell morphology and simplified, Ceratites-like sutures occurred at least three times, one of them the Albian-Cenomanian engonoceratids. In all cases, this pattern was associated with successful migration, colonization and speciation. This set of characters is summarized in Fig. 12 .

Click on thumbnail to enlarge the image.

Figure 12: Strong similarities in shell shapes among certain ammonoid taxa. Repeated eco-morphotype pattern among Mesozoic Ammonoidea. The proposed eco-morphotype comprises a set of features consists of nektonic, active swimmer mode of life in shallow marine settings, simplified and ceratitic suture and involute, oxycone-platycone shell form. Mesozoic time-scale after Gradstein et alii, 2004.


Engonoceratid ammonites are important time indicators of chronostratigraphic time in strata of shallow marine origin ranging in age from the ?latest Aptian times to the youngest of Cenomanian formations. Where they occur in the Tethyan Faunal Realm, they are excellent indicators of a shallow water environment. Today engonoceratids play an important role in correlation, biostratigraphy and ecological studies, but trhey are limited in distribution to temperate water. Engonoceratids are a versatile, and successful group of Cretaceous Ammonoidea, ecological pioneers that were successful in occupying previously inaccessible pristine ecological niches. The range of suture lines, shell form, all is response to a shallow water habitat created a morphological pattern that proved successful not only for the engonoceratids, but also for other Mesozoic Ammonoidea.


Revision of Engonoceras duboisi Latil, 1989

Engoncoeras duboisi Latil, 1989, is known only from 2 localities and represented by a handful specimen. New specimen from Hungary led the present author for thorough morphological analysis, which resulted the below revision of the species.

Parengonoceras duboisi (Latil, 1989)

(Figs. 13A-B - 14 - 15 )

v 1989 Engonoceras duboisi sp. nov. Latil: p. 56, pl. 2, figs. 1-3.

1989 Engonoceras sp. cf. E. duboisi sp. nov. Latil: p. 57, pl. 2, fig. 4.

v 1990a Engonoceras duboisi Latil; Bujtor: p. 11, pl. 1, figs. 1-4.

v 2007 Engonoceras duboisi Latil; Szives et alii: p. 101, pl. 15, figs. 1, 4.



Click on thumbnail to enlarge the image.

Figure 13: Parengonoceras duboisi (Latil, 1989) from the latest Albian (Stoliczkaia dispar Zone) of Tilos forest (Bakony Mts. Pénzesgyor, Veszprém County, Hungary). Specimen NHNM M2010.760.1. A.) lateral view, B.) dorsal view.

Click on thumbnail to enlarge the image.

Figure 14: Suture line of Parengonoceras duboisi (Latil, 1989) at whorl height of 51 mm. Specimen HNHM M2010.760.1.

Material. Three internal moulds from the Late Albian (Stoliczkaia dispar Zone) of Tilos forest (Pénzesgyor, Bakony Mts, Hungary) and three worn internal moulds from the Late Albian (Stoliczkaia dispar Zone) of Salazac, Gard (France).

Occurrence. Latil (1989) reported it from the latest Albian of Salazac, Gard (France). Bujtor (1990a) described it from Hungary (Tilos Forest, Bakony Mts.). Szives et alii (2007) copied the figures of Bujtor (1990a). New collection by the present author from the Tilos Forest (Bakony Mts., Hungary) yielded a single specimen described here for the first time supporting the distribution of the species for the latest Albian of France and Hungary. The new record of the Late Albian P. duboisi from the Bakony Mts. is important as a connector between the rich and diverse western and less well known eastern Tethyan Parengonoceras species during the Albian. It suggests a southern Tethyan migration route because the fact that the Alcapa Tectonic Unit (which also includes the Bakony Mts.) was part of the Apulia microplate bordered by the southern edge of the Penninic Ocean (Csontos & Vörös, 2004). The revealed third specimen of P. duboisi from Hungary refers to the rarity of this species in the Bakony Mts, Hungary: 1:10,000 (Z. Evanics pers. comm.).

Description. Medium sized incomplete but shelly phragmocones and internal moulds. Coiling is typical of the Engonoceratidae. The conch is discoidal and strongly involute and oxycone (Fig. 13 ). Last whorl embraces the previous ones. The umbilicus is small and shallow. Umbilical wall is low and the umbilical shoulder is gently rounded. Flanks converge and are almost unsculptured. The cross section is lanceolate. Venter is smooth and narrow. Finer or stronger prorsiradiate falcoid ribs arise at midflank, which end at the ventro-lateral shoulders. Six fine and falcoid ribs are on the last quarter of whorl; ribs end at fine tubercles on ventral shoulder. Body chamber is not preserved. Suture line (Fig. 14 ) is typical for Parengonoceras showing two adventive lobes. Suture is characterized by pincer-like and finely incised lobes and saddles. Pincer-like saddles are irregular polyphillic. Lobes are also incised irregularly.

Click on thumbnail to enlarge the image.

Figure 15: Size distribution of Hungarian (solid) and French (open) specimens of Parengonoceras duboisi (Latil, 1989).

Remarks. P. duboisi is most similar to P. elegans Renz and Platiknemiceras hachourii (Dubourdieu). The Early Albian Platiknemiceras hachourii has a slightly more slender cross-section, and the striae on the lower flanks are finer in P. duboisi and the suture is less frilled than on P. hachourii. The extreme reduction of ornamentation in P. duboisi is also not present in P. hachourii. The ornamentation is typical of Parengonoceras as is the diameter and whorl height ratios (Fig. 15 ). P. duboisi is most similar to P. elegans Renz in its shell ornamentation. The small, ventrolateral falcoid ribs of P. elegans (Renz, 1970, pl. 3, fig. 1a-c) are comparable with P. duboisi. However P. duboisi shows fewer ribs per whorl than P. elegans. The superficially similar Engonoceras and Parengonoceras species are clearly distinguished from each other based on suture lines - if present. Normally the saddles of Engonoceras are all entire except that the outermost, which is bifid (Wright et alii, 1996, p. 130). The present species show only frilled saddles in all stages in the specimens. All saddles of the holotype are incised, mostly bifid (Latil, 1989, pl. 2, figs. 2-3) being worn specimens, therefore the frilled suture is not well preserved, however there are no entire saddles at any stage. The Hungarian specimens are well preserved, partly shelly specimens with well observable suture revealing more incised saddles. Biometry of the French and Hungarian specimens refers the same species (Fig. 15 ), too. Based on the well developed and frilled saddles and lacking entire saddles at any stage, this species is convincingly placed into Parengonoceras. Recently the uncertainty of the systematic position of P. duboisi is also referred by Bulot (2010, p. 169) excluding it from the genus Engonoceras. This conclusion is supported here.


I acknowledge the valuable comments on the initial draft by Herbert Klinger, Jean-Louis Latil and Christian Meister. My special thanks to Robert W. Scott for providing vital papers and essential criticism of draft as well as to Peter F. Rawson to clarify 'Pseudengonoceras'. I acknowledge the detailed remarks of Jens Lehmann, which greatly improved the text. Special thanks to Margaret Yacobucci, Jeffrey Stilwell and Mikel Lopez-Horgue for sending important papers. I am deeply indebted for the great help and encouragement of Hugh G. Owen on Albian ammonites found in the 1990's and especially for his careful comments on this draft, which greatly improved the quality of the paper. I am also indebted to the late William Cobban who in the early 1990's introduced me to the engonoceratids. I acknowledge the technical support of Attila Vörös (Hungarian Natural History Museum, Budapest) for housing the specimen treated here and granting permission for use the facilities of the Museum. I am grateful to Mr. Zoltán Evanics (private collector) who provided his Hungarian engonoceratid specimens for this research. Finally, I acknowledge the comments of the referees of this paper, especially the detailed remarks of Christian Meister. Last but not least I acknowledge the continuous help of the Editor, Bruno Granier, and the careful linguistic improvement provided by Nestor Sander.

Bibliographic references

Abdallah H. & Memmi L. (1994).- Sur l'âge des couches à Knemiceras de Tunisie méridionale. Caractérisation de l'Albien supérieur (Zone à Inflata et Zone à Substuderi).- Comptes Rendus de l'Académie des Sciences, Paris, (Série II, Sciences de la Terre et des Planètes), t. 319, p. 337-340.

Abdallah H., Sassi S. & Meister C. (2008).- Palaeogeography at the Cenomanian-Turonian boundary in southern Central Tunisia: The basins of Gafsa area.- Abstracts, Thirty third International Geological Congress, 6-14 August, 2008, Oslo, Norway.

Abu-Zied R. (2008).- Lithostratigraphy and biostratigraphy of some Lower Cretaceous outcrops from Northern Sinai, Egypt.- Cretaceous Research, London, vol. 29, p. 603-624.

Accarie H. & Delamette M. (1991).- Découverte d'ammonites albiennes dans le massif apennin de la Maiella (plate-forme Lazio-abruzzaise Italie centrale) : précision sur la durée du hiatus bauxitique médio-Crétacé.- Cretaceous Research, London, vol. 12, p. 81-90.

Aly M.F. & Abdel-Gawad G.I. (2001).- Upper Cenomanian-Lower Turonian ammonites from north and central Sinai, Egypt.- El Minia Bulletin, vol. 13-14, p. 17-60.

Aly M.F., Smadi A. & Abu-Azzam A. (2008).- Late Cenomanian-Early Turonian ammonites of Jordan.- Revue de Paléobiologie, Genève, vol. 27, p. 43-71.

Amard B., Collignon M. & Roman J. (1981).- Étude stratigraphique et paléontologique du Crétacé supérieur et Paléocène du Tinrhert-W et Tademait-E (Sahara algérien).- Documents des Laboratoires de Géologie de Lyon, Hors Série, vol. 6, p. 15-173.

Amédro F. & Destombes P. (1984).- Présence du genre Knemiceras (Ammonoidea, Engonoceratidae) dans l'Albien moyen de l'Aube (France).- Bulletin d'Information des Géologues du Bassin de Paris, vol. 21, p. 21-25.

Amédro F., Busson G. & Cornée A. (1996).- Révision des ammonites du Cénomanien supérieur et du Turonien inférieur du Tinrhert (Sahara algérien) : implications biostratigraphiques.- Bulletin du Muséum national d'Histoire naturelle, Paris, (4ème Série), Section C, vol. 18, p. 179-232.

Amédro F., Cobban W.A., Breton G. & Rogron P. (2002).- Metengonoceras teigenense Cobban et Kennedy, 1989 : une ammonite exotique d'origine nord-américaine dans le Cénomanien inférieur de Basse Normandie (France).- Bulletin trimestriel de la Société géologique de Normandie et des Amis de Muséum du Havre, t. 87, p. 5-28.

Amédro F. (2008).- Support for a Vraconnian Stage between the Albian sensu stricto and the Cenomanian (Cretaceous System).- Carnets de Géologie / Notebooks on Geology, Brest, Memoir 2008/02 (CG2008_M02), 83 p.

Amireh B.S. (1997).- Sedimentology and paleogeography of the regressive-transgressive Kurnub Group (Early Cretaceous) of Jordan.- Sedimentary Geology, Amsterdam, vol. 112, p. 69-88.

Arias C. & Wiedmann J. (1977).- Ammoniten und der Utrillas-Schichten (Mittelkreide) in der östlichen Provinz Albacete, SE Spanien.- Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, Stuttgart, vol. 1977, p. 1-14.

Arkell W.J., Kummel B. & Wright C.W. (1957).- Mesozoic Ammonoidea. In: Moore R.C. (Ed.), Mollusca 4.- Treatise on Invertebrate Paleontology, Geological Society of America, New York; University of Kansas, Lawrence, Part L, p. L80-L437.

Arnould-Saget S. (1956).- Contribution à l'étude des Engonoceratidae (les couches à Knemiceras du Sud Tunisien).- Annales des Mines et de la Géologie, Tunis, vol. 20, p. 1-47.

Ayyasami K. & Banerji R.K. (1984).- Cenomanian-Turonian transition in the Cretaceous of Southern India.- Bulletin of the Geological Society of Denmark, Copenhagen, vol. 33, p. 21-30.

Barragán-Manzo R., González-Arreola C. & Villasenor A.B. (2004).- Palaeoecological significance of Barremian ammonite assemblages and facies variations from Southwest Mexico.- Lethaia, Oslo, vol. 37, p. 223-234.

Barragán-Manzo R., Rojas-Consuegra R., Díaz-Otero C. & Isaac-Mengana J. (2008).- Lower Barremian (Lower Cretaceous) ammonites from the Veloz Formation of Central Cuba: biostratigraphic and paleobiogeographic implications. In: Argelés J.G. (ed.), Abstracts and Program Eighteenth Caribbean Geological Conference.- Sociedad Dominicana de Geología, Santo Domingo, p. 14-15. 

Basse É. (1937-1940).- Les Céphalopodes crétacés des massifs côtiers syriens. Part 1-2.- Notes et Mémoires sur le Moyen-Orient, Paris, vol. 2, p. 165-200; vol. 3, p. 411-473.

Basse É. (1954).- Description d'une nouvelle espèce d'ammonite tunisienne appurtenant au genre Neolobites Fischer, 1882 : Neolobites medeninensis nov. sp. et considérations sur çe genre.- Bulletin de la Société des Sciences Naturelles de Tunisie, Tunis, vol. 6, p. 197-204.

Bataller J.R. (1954).- Los Engonoceratidos en España. In: Homenaje póstumo al Dr. D. Francisco Pardillo Vaquer.- Facultad de Ciencias de la Universidad de Barcelona, p. 173-178.

Bataller J.R. (1959).- Primer suplemento a la "Sinopsis de las especies nuevas del Cretáceo de España".- Boletin del Instituto Geológico y Mineralógico de España, Madrid, vol. 70, p. 1-77.

Batt R.J. (1991).- Sutural amplitude of ammonite shells as a paleoenvironmental indicator.- Lethaia, Oslo, vol. 24, p. 219-225.

Benavides-Cáceres V.A. (1956).- Cretaceous System in northern Peru.- Bulletin of the American Museum of Natural History, New York, vol. 108, p. 357-493.

Benton M., Bouaziz S., Buffetaut E., Martill D., Ouaja M., Soussi M. & Trueman C. (2000).- Dinosaurs and other fossil vertebrates from fluvial deposits in the Lower Cretaceous of southern Tunisia.- Palæogeography, Palæoclimatology, Palæoecology, Amsterdam, vol. 157, p. 227-246.

Ben-Youssef M., Biely A., Kamoun Y. & Zouari M. (1985).- L'Albien moyen supérieur à Knemiceras frome la base de la grande transgression crétacée au Tebaga de Medenine (Tunisie meridionale).- Comptes Rendus de l'Académie des Sciences, Paris, (Série II, Sciences de la Terre et des Planètes), t. 300, p. 965-968.

Berthou P.-Y. & Lauverjat J. (1978).- Les bassin occidental portugais de l'Albien au Campanien. In: Reyment R.A. & Thomel G. (eds.), Événements de la partie moyenne du Crétacé.- Annales du Muséum d'Histoire Naturelle de Nice, vol. 4 (1976), p. I.1.-I.14.

Berthou P.-Y. & Lauverjat J. (1979).- Essai de synthèse paléogéographique et paléobiostratigraphique du bassin occidental portugais au cours du Crétacé supérieur.- Ciências da Terra, Lisboa, vol. 5, p. 121-144.

Berthou P.-Y., Ferreira-Soares A. & Lauverjat J. (1979).- Mid Cretaceous events Iberian Field Conference 77, Guide I, Partie Portugal.- Cuadernos de Geología Ibérica, Madrid, vol. 5, p. 31-124.

Boit B. (1926).- Dos Neolobites.- Boletín de la Sociedad Geológica del Perú, Lima, vol. 2, p. 39-41.

Böhm J. (1898).- Ueber Ammonites Pedernalis v. Buch.- Zeitschrift der Deutschen Geologischen Gesellschaft, Hannover, Band 50, p. 183-201.

Böse E. (1910).- Monografía geológica y paleontológica del Cerro de Muleros cerca de Ciudad Juárez, Estado de Chihuahua y descripción de la fauna Cretácea de La Encantada, Placer de Guadalupe, Estado de Chihuahua.- Boletín del Instituto Geológico de México, vol. 25, 193 p.
online at

Böse E. (1928).- Cretaceous ammonites from Texas and northern Mexico.- University of Texas, Bulletin, Austin, vol. 2748, p. 143-312.

Braga J.C., Company M., García-Hernández M., Linares A., Rivas P. & Sandoval P. (1982).- El Albense superior en el sector de Huescar (Provincia de Granada, Cordilleras Beticas).- Cuadernos de Geología Ibérica, Madrid, vol. 8, p. 703-720.

Bralower T.J., Cobabe E., Clement B., Sliter W.V., Osburn C.L. & Longoría J. (1999).- The record of global change in mid-Cretaceous (Barremian-Albian) sections from the Sierra Madre, northeastern Mexico.- Journal of Foraminiferal Research, Lawrence, vol. 29, p. 418-437.

Branisa L. (1968).- Hallazgo del ammonite Neolobites en la Caliza Miraflores y de huellas de dinosaurios en la Formación El Molino y su significado para la determinación de la edad del "Grupo Puca".- Boletín del Instituto Boliviano del Petróleo, La Paz, vol. 8, p. 16-28.

Breistroffer M. (1940).- Sur la découverte de Knemiceras aff. saadense Thom. et Per. sp. dans le Vraconien de Salazac (Gard).- Compte Rendu sommaire des Séances de la Société géologique de France, Paris, fasc. 8-9, p. 87-88.

Breistroffer M. (1952).- Sur la découverte de Knemiceratinae (ammonites albiennes) en Équateur, en Colombie et au Vénézuela.- Comptes rendus hebdomadaires des séances de l'Académie des Sciences, Paris, t. 234, p. 2633-2635.

Brito I.M. (1967).- Sôbre a ocorrência de um cefalópodo no Cretáceo da área de Estância, Estado de Sergipe, Brasil.- Instituto de Geociências, Boletim de Geologia,  Universidade Federal do Rio de Janeiro, vol. 1, p. 71-77.

Brito I.M. (1986).- O Cretáceo inferior do nordeste do Brasil.- Anuário do Instituto de Geociências, Universidade Federal do Rio de Janeiro, vol. 1986, p. 103-125.

Buch L. (1848).- Über Ceratiten.- Physikalische Mathematische Abhandlungen der Koeniglichen Akademie der Wissenschaften zu Berlin, p. 1-31.

Bujtor L. (1990a).- First record of Engonoceratidae Hyatt, 1900 (Ammonoidea, Cretaceous) from Hungary.- Revue de Paléobiologie, Genève, vol. 9, p. 9-14.

Bujtor L. (1990b).- Albai és cenomán ammonoideák palaeobiogeográfiai értékelése az alp-kárpáti és a mediterrán Tethys régióban.- általános Földtani Szemle, Budapest, vol. 25, p. 305-325.

Bulot L.G., Beaudoin B. & Dauphin L. (2005).- Modification de la structure des populations d'ammonites dans l'Aptien inférieur sommital et l'Aptien supérieur du domaine Vocontien (SE France). In: Grosheny D. (ed.), Impact environnemental sur la dynamique des populations au Crétacé.- Volume des résumés, École des Mines de Paris, p. 15-17.

Bulot L.G. (2007).- Endémisme et cosmopolitisme des faunes d'ammonites de la plaque arabique au Crétacé moyen (Aptien-Turonien). In: Bulot L.G., Ferry S. & Grosheny D. (eds.), Relations entre les marges septentrionale et méridionale de la Téthys au Crétacé.- Carnets de Géologie / Notebooks on Geology, Brest, Memoir 2007/02 (CG2007_M02), p. 49-55.

Bulot L.G., Robert E., Jaillard E. & Kennedy W.J. (2007).- The Albian ammonite successions of the subandean zone of Ecuador. In: Díaz-Martinez E. & Rábano I. (eds.), Fourth European Meeting on the Palaeontology and Stratigraphy of Latin America.- Cuadernos del Museo Geominero, Instituto Geológico y Minero de España, Madrid, vol. 8, p. 57-61.

Bulot L.G. (2010).- Systematic palaeontology of Aptian and Albian ammonites from southwest Iran. In: Buchem F.S.P. van, Al-Husseini M.I., Maurer F. & Droste H.J. (eds.), Aptian Stratigraphy and Petroleum Habitat of the Eastern Arabian Plate.- GeoArabia Special Publications 4, vol. 1, p. 167-195.

Cabrera La Rosa A. & Petersen G. (1936).- Reconocimiento geológico de los yacimientos petrolíferos del departamento de Puno.- Boletín del Cuerpo de Ingenieros de Minas del Perú, Lima, vol. 115, 100 p.

Canérot J. & Collignon M. (1981).- La faune albienne de Traiguera (province de Castellon-Espagne).- Documents des Laboratoires de Géologie de Lyon, Hors Série, vol. 6, p. 227-249.

Canérot J., Cugny P., Peybernés B., Rahhali I., Rey J. & Thieuloy J-P. (1986).- Comparative study of the lower and mid-Cretaceous sequences on different Maghrebian shelves and basins - their place in the evolution of the North African Atlantic and Neotethysian margins.- Palæogeography, Palæoclimatology, Palæoecology, Amsterdam, vol. 55, p. 213-232.

Casey R. (1957).- The Cretaceous ammonite genus Leymeriella, with a systematic account of its British occurrences.- Palaeontology, London, vol. 1, p. 28-59.

Casey R. (1960).- Hengestites, a new genus of Gault ammonites.- Palaeontology, London, vol. 2, part 2, p. 200-209.

Casey R. (1961).- The Cretaceous (Albian) ammonite genus Platiknemiceras Bataller.- The Annals and Magazine of Natural History, London, (Thirteenth Series), vol. 4, p. 353-357.

Casey R. (1978).- A monograph of the Ammonoidea of the Lower Greensand. Part VIII.- Monograph of the Palaeontographical Society, London, Issue 554, part of vol. 132, p. 583-632.

Chiplonkar G.W. (1941).- Ammonites from the Bagh Beds.- Proceedings of the Indian Academy of Sciences, Bangalore, (Section B), vol. 14, p. 271-276.

Choffat P. (1886).- Recueil d'études paléontologiques sur la faune crétacique du Portugal. Volume I. Espèces nouvelles ou peu connues.- Commisão do Serviço Geologico, Lisbon, vol. 1, p. 1-40.

Cobban W.A. (1987).- The Upper Cretaceous (Cenomanian) ammonites Metengonoceras dumbli (Cragin) and M. acutum Hyatt.- U.S. Geological Survey, Bulletin, Washington, vol. 1690, p. C1-C7.

Cobban W.A. & Kennedy W.J. (1989).- The Ammonite Metengonoceras Hyatt, 1903 from the Mowry Shale (Cretaceous) of Montana and Wyoming.- U.S. Geological Survey, Bulletin, Washington, vol. 1787, p. L1-L11.

Cobban W.A. & Kennedy W.J. (1990).- Upper Cenomanian ammonites from the Woodbridge Clay member of the Raritan Formation in New Jersey.- Journal of Paleontology, Tulsa, vol. 64, p. 845-846.

Cobban W.A. & Scott G.R. (1972).- Stratigraphy and ammonite fauna of the Graneros Shale and Greenhorn Limestone near Pueblo, Colorado.- U.S. Geological Survey, Professional Paper, Washington, vol. 645, p. 1-108.

Collignon M. (1963).- Atlas des fossiles caractéristiques de Madagascar (Ammonites). Fascicule X (Albien).- Service géologique, Tananarive, 184 p.

Collignon M. (1965).- Nouvelles ammonites néocrétacées sahariennes.- Annales de Paléontologie (Invertébrés), Paris, vol. 51, p. 165-220.

Collignon M. (1966).- Les Céphalopodes crétacés du bassin côtier de Tarfaya. Relations stratigraphiques et paléontologiques.- Notes et Mémoires Service géologique du Maroc, Rabat, vol. 175, p. 9-148.

Collignon M. & Faure-Muret A. (1968).- Ammonites crétacées des Rides prérifaines (région du Dahar-en-Nsour).- Notes du Service géologique du Maroc, Rabat, vol. 28, p. 19-27.

Collignon M. (1981).- Faune albo-cénomanienne de la formation des marnes de Kazhdumi, région du Fars - Khuzestan (Iran).- Documents des Laboratoires de Géologie de Lyon, Hors Série, vol. 6, p. 251-291.

Coquand M.H. (1862).- Géologie et paléontologie de la région sud de la province de Constantine.- Mémoires de la Société d'Émulation de la Provence, Marseille, t. II, 366 p.
online at

Cotteau G.H. (1853).- Études sur les Mollusques fossiles du département de l'Yonne.- Bulletin de la Société des Sciences historiques et naturelles de l'Yonne, Auxerre, fasc. 7, 319 p.

Courville P., Thierry J. & Lang J. (1998).- Ammonites faunal exchanges between South Tethysian platforms and South Atlantic, during the uppermost Cenomanian - lowermost Turonian, in the Benue Trough (Nigeria).- Géobios, Villeurbanne, vol. 31, p. 187-214.

Courville P. (2007).- Échanges et colonisations fauniques (Ammonitina) entre Tethys et Atlantique sud au Crétacé superieur : voies atlantiques ou sahariennes? In: Bulot L.G., Ferry S. & Grosheny D. (eds.), Relations entre les marges septentrionale et méridionale de la Téthys au Crétacé.- Carnets de Géologie / Notebooks on Geology, Brest, Memoir 2007/02 (CG2007_M02), p. 16-19.

Cragin F.W. (1893).- A contribution to the invertebrate paleontology of the Texas Cretaceous.- Texas Geological Survey Fourth Annual Report (for 1892), Austin, p. 139-294.

Cragin F.W. (1894).- New and little known vertebrates from the Neocomian of Kansas.- The American Geologist, Minneapolis, vol. 14, p. 1-12.

Cragin F.W. (1900).- Buchiceras (Sphenodiscus) belviderensis and its varieties.- The Colorado College Studies, Colorado Springs, vol. VIII, p. 27-31.

Csontos L. & Vörös A. (2004).- Mesozoic plate tectonic reconstruction of the Carpathian region.- Palæogeography, Palæoclimatology, Palæoecology, Amsterdam, vol. 210, p. 1-56.

Destombes P. (1965).- Découverte de Knemiceratinae : Parengonoceras et Platiknemiceras (Ammonites) dans l'Albien inférieur du Bassin parisien.- Comptes Rendus sommaire de la Société géologique de France, p. 332-333.

Destombes P. (1979).- Les ammonites de l'Albien inférieur et moyen dans le stratotype de l'Albien : gisements, paléontologie, biozonation. In: Rat P., Magniez-Jannin F., Chateauneuf J.-J., Damotte R., Destombes P., Fauconnier D., Feuillée P., Manivit H., Mongin D. & Odin G. (eds.), L'Albien de l'Aube.- Les Stratotypes Français, Comité Français de Stratigraphie, Ed. CNRS, Paris, vol. 5, p. 51-193.

Douvillé H. (1890).- Sur la classification des Cératites de la Craie.- Bulletin de la Société géologique de France, Paris, (3ème Série), t. XVIII, p. 275-292.

Douvillé H. (1912).- Évolution et classification des Pulchelliidés.- Bulletin de la Société géologique de France, Paris, (4ème Série), t. XI, p. 285-320.

Douvillé H. (1916).- Les Terrains Secondaires dans le Massif du Moghara à l'Est de l'Isthme de Suez.- Mémoires de l'Académie des Sciences, Paris, (2ème Série), vol. 54, 184 p.

Douvillé H. (1928).- Les Ammonites de la Craie supérieure en Égypte et au Sinaï.- Académie des Sciences de l'Institut de France, Mémoires, Paris, vol. 60, p. 1-10.

Douvillé H. (1931).- Contribution à la Géologie de l'Angola. Les Ammonites de Salinas.- Boletim do Museu e Laboratorio Mineralogico e Geologico da Universidade de Lisboa, vol. 1, p. 17-46.

Dubourdieu G. (1953).- Ammonites nouvelles des Monts du Mellégue.- Bulletin du Service de la Carte géologique d'Algérie, Alger, (1ère Série), Paléontologie, vol. 16, 76 p.

Eck O. (1910).- Bearbeitung der Cephalopoden der Schweinfurtschen Sammlung und über die Entwicklung des Turons in Ägypten, (Obere Kreide Ägyptens).- Zeitschrift der Deutschen Geologischen Gesellschaft, Hannover, Band 62, p. 379-387.

Eck O. (1914).- Die Cephalopoden der Schweinfurthschen Sammlung aus der Oberen Kreide Ägyptens.- Zeitschrift der Deutschen Geologischen Gesellschaft, Hannover, Band 66, p. 179-216.

Etayo-Serna F. (1979).- Zonation of the Cretaceous of central Colombia by ammonites.- Publicaciones Geológicas Especiales del Ingeominas, Bogotá, vol. 2, 186 p.

Etayo-Serna F. (1981).- On the supposed Aptian occurrence of the ammonite genus Neodeshayesites in Colombia and Venezuela; with an appendix on Neodeshayesites karsteni (Marcou).- Geología Norandina, Bogotá, vol. 3, p. 45-51.

Fischer P. (1880-1887).- Manuel de conchyliologie et de paléontologie conchyliologique.- Librairie F. Savy, Paris, 11 fascicules, 1369 p.
online at

Förster R. (1975).- Die geologische Entwicklung von Süd-Mozambique seit der Unterkreide und die Ammoniten-Fauna von Unterkreide und Cenoman.- Geologisches Jahrbuch, Hannover, (Reihe B), Heft 12, 324 p.

Furon R. (1935).- Le Crétacé et le Tertiaire du Sahara soudanais (Soudan, Niger, Tchad).- Archives du Muséum national d'Histoire naturelle, Paris, (6ème Série), vol. 13, p. 3-97.

Gabb W.M. (1877).- Description of a collection of fossils, made by Doctor Antonio Raimondi in Peru.- Journal of the Academy of Natural Sciences of Philadelphia, (series 2), vol. VIII, p. 263-336.

Gangopadhyay T.K. & Bardhan S. (2007).- Ornamental polymorphism in Placenticeras kaffrarium (Ammonoidea; Upper Cretaceous of India): evolutionary implications. In: Landman N.H., Davis R.H. & Mapes R.H. (eds.), Cephalopods present and past: new insights and fresh perspectives.- Springer Verlag, Dordrecht, p. 97-120.

García A., Mas R., Segura M., Carenas B., García-Hidalgo J.F., Gil J., Alonso A., Aurell M., Bádenas B., Benito M.I., Meléndez A. & Salas R. (2004).- Segunda fase de post-rifting: Cretácico Superior. In: Vera J.A. (ed.), Geología de España.- Sociedad Geológica de España y Instituto Geológica y Mineralógica de España, Madrid, p. 509-522.

Geyer O.F. (1995a).- Knemiceras uhligi (Choffat) dans le Chaîne Ibérique méridionale (Albien supérieur, Espagne).- Batallería, Barcelona, vol. 5, p. 5-17.

Geyer O.F. (1995b).- Zur Alb-Cenoman-Transgression im südlichen Keltiberikum (Spanien).- IGPS Abstracts Profil, Stuttgart, vol. 8, p. 473-482.

Geyer O.F., Kuss J. & Bachmann M. (1997).- On some Albian ammonites from northeastern Sinai (Egypt).- Paläontologische Zeitschrift, Stuttgart, vol. 71, p. 221-229.

Gillard P.A. (1942).- Sur la stratigraphie des calcaires crétaciques de la forêt de Touvois.- Compte Rendu sommaire des Séances de la Société géologique de France, vol. 9, p. 78-79.

Gimenez R., Martin-Chivelet J. & Vilas L. (1993).- Late Albian-Middle Cenomanian carbonate platform of Betic and Iberian basins (Spain). In: Simo J.A.T., Scott R.W. &  Masse J.-P. (eds.), Cretaceous carbonate platforms.- AAPG Memoirs, vol. 56, p. 271-281.

González-León C. (1988).- Estratigrafía y geología estructural de las rocas sedimentarias cretácicas del área del Lampazos, Sonora.- Universidad Nacional Autónoma de México, Instituto de Geología, Revista, vol. 7, p. 148-162.

Gradstein F., Ogg J.G. & Smith A.G. (2004).- A geologic time scale 2004.- Cambridge University Press, 589 p.

Greco B. (1915).- Fauna cretacea dell'Egitto raccolta dal Figari Bey.- Palaeontographia Italica, Pisa, vol. 21, p. 189-232.

Grosheny D., Chikhi-Aouimeur F., Ferry S., Benkherouf-Kechid F., Jati M., Atrops F. & Redjimi-Bourouiba W. (2008).- Le Cénomanien supérieur-Turonien de l'Atlas saharien (Algérie).- Bulletin de la Société Géologique de France, vol. 179, n° 6, p. 593-603.

Grossouvre A. (1912).- Le Crétacé de la Loire-Inférieure et de la Vendée.- Bulletin de la Société Scientifique naturelle de l'Ouest de la France, Nantes, (3ème Série), t. II, n° 1-2, p. 1-38.

Guerrero J. (2002).- A proposal on the classification of systems tracts: application to the allostratigraphy and sequence stratigraphy of the Cretaceous Colombian Basin. Part 2: Barremian to Maastrichtian.- Geología Colombiana, Bogotá, vol. 27, p. 27-49.

Haan G. de (1825).- Monographiae Ammoniteorum et Goniatiteorum Specimen.- H.W. Hazenberg, Lugduni Batavorum, 168 p.

Haile N.S. (1955).- Geological accounts of West-Borneo.- Geological Survey Department, British Territories in Borneo, Bulletin, Kuching, Sarawak, vol. 2, 285 p.

Haug E. (1900).- Céphalopodes.- Revue critique de Paléozoologie, Paris, 4ème année, n°1, p. 19-24 & 78-87.
online at

Henderson R.A. (1973).- Clarence and Raukumara Series (Albian - ?Santonian) Ammonoidea from New Zealand.- Journal of the Royal Society of New Zealand, Wellington, vol. 3, p. 71-123.

Herkat M. (1999).- La sédimentation de haut niveau marin du Crétacé supérieur de l'Atlas saharien oriental et des Aurés. Stratigraphie séquentielle. Analyse quantitative des biocénoses, évolution paléogéographique et contexte géodynamique.- Thèse Doctorat ès Sciences, Université des Sciences et de la Technologie Houari Boumediene (USTHB), Alger, 802 p.

Horbury A. (2006).- Northern Iraq study.- Cambridge Carbonates Ltd, UK, 386 p.

Hyatt A. (1875).- The Jurassic and Cretaceous ammonites collected in South America by Prof. James Orton, with an appendix upon the Cretaceous ammonites of Prof. Hart's collection.- Proceedings of the Boston Society of Natural History, vol. 17, p. 365-378.

Hyatt A. (1889).- Genesis of the Arietidae.- Smithsonian Contributions to Knowledge, Washington, vol. 673, p. 1-238.

Hyatt A. (1900).- Cephalopoda. In: Zittel K.A. (ed.), Text-book of Paleontology.- Macmillan, London - New York, p. 502-604.

Hyatt A. (1903).- Pseudoceratites of the Cretaceous.- U.S. Geological Survey, Monographs, Washington, vol. 44, 1-351.

Iba Y. (2009).- An Early Albian Arctic-type ammonite Arcthoplites from Hokkaido, northern Japan, and its paleobiogeographic and paleoclimatological implications.- Journal of Asian Earth Sciences, Oxford, vol. 34, p. 46-50.

I.C.Z.N. (1999).- International Code of Zoological Nomenclature, Fourth Edition.- International Trust for Zoological Nomenclature, London, xxix + 306 p.
online version at

Ifrim C., Stinnesbeck W. & Schafhauser A. (2005).- Maastrichtian shallow-water ammonites of northeastern Mexico.- Revista Mexicana de Ciencias Geológicas, Mexico, vol. 22, p. 48-64.

Immenhauser A., Schlager W., Burns S.J., Scott R.W., Geel T., Lehmann J., Gaast S. van der & Bolder-Schrijver L.J.A. (2000).- Origin and correlation of disconformity surfaces and marker beds, Nahr Umr Formation, northern Oman.- Society for Sedimentary Geology, Special Publication, Tulsa, vol. 69, p. 209-225.

Jacobs D.K. & Chamberlain J.A. (1996).- Buoyancy and hydrodynamics in Ammonoids. In: Landman N.H., Tanabe K. & Davis R.A. (eds.), Ammonoid paleobiology.- Topics in Geobiology, Plenum Press, New York, vol. 13, p. 170-224.

Jaillard É. & Sempere T. (1992).- Las secuencias sedimentarias de la formacion miraflores y su significado cronoestratigrafico.- Revista Tecnica de YPFB, Santa Cruz, vol. 12, p. 257-264.

Jaillard É. & Arnaud-Vanneau A. (1993).- The Cenomanian - Turonian transition on the Peruvian margin.- Cretaceous Research, London, vol. 14, p. 585-605.

Jaillard É. (1995).- La sedimentación albiana - turoniana en el sur del Perú (Arequipa - Puno - Putina).- Sociedad Geológica del Perú, Lima, Volumen jubilar Alberto Benavides, p. 135-157.

Kauffman E.G. (1973).- Cretaceous Bivalvia. In: Hallam A. (ed.), Atlas of paleobiogeography.- Elsevier, Amsterdam,  p. 353-384.

Kauffman E.G. (1984).- Paleobiogeography and evolutionary response dynamic in the Cretaceous Western Interior seaway of North America. In: Westermann G.E.G. (ed.), Jurassic-Cretaceous biochronology and paleogeography of North America.- Geological Association of Canada, Special Paper, St. John's, n° 27, p. 273-306.

Kauffman E.G., Sageman B.B., Kirkland J.I., Elder W.P., Harries P.J. & Villamil T. (1993).- Molluscan biostratigraphy of the Cretaceous Western Interior Basin, North America. In: Caldwell W.G.E. & Kauffman E.G. (eds.), Evolution of the Western Interior Basin.- Geological Association of Canada, Special Paper, St. John's, n°  39, p. 397-434.

Kennedy W.J. & Cobban W.A. (1976).- Aspects of ammonite biology, biogeography, and biostratigraphy.- Special Papers in Palaeontology, London, vol. 17, 94 p.

Kennedy W.J. & Klinger H.C. (1979).- Cretaceous faunas from Zululand and Natal, South Africa. The ammonite superfamily Haplocerataceae Zittel, 1884.- Annals of the South African Museum, Cape Town, vol. 77, p. 85-121.

Kennedy W.J. & Juignet P. (1981).- Upper Cenomanian ammonites from the environs of Saumur, and provenance of the type of Ammonites vibrayeanus and Ammonites geslinianus.- Cretaceous Research, London, vol. 2, p. 19-49.

Kennedy W.J., Juignet P. & Hancock J.M. (1981).- Upper Cenomanian ammonites from Anjou and the Vendée, Western France.- Palaeontology, London, vol. 24, p. 25-84.

Kennedy W.J. & Wright C.W. (1983).- Ammonites polyopsis Dujardin, 1837, and the Cretaceous ammonite family Placenticeratidae Hyatt, 1900.- Palaeontology, London, vol. 26, p. 855-873.

Kennedy W.J. & Juignet P. (1984).- A revision of the ammonite faunas of the Cenomanian. 2 The families Binneyitidae, Desmoceratidae, Engonoceratidae, Placenticeratidae, Hoplitidae, Schloenbachiidae, Lyelliceratidae and Forbesiceratidae.- Cretaceous Research, London, vol. 5, p. 93-161.

Kennedy W.J. (1988).- Late Cenomanian and Turonian ammonite faunas from northeast and central Texas.- Special Papers in Palaeontology, London, vol. 39, 131 p.

Kennedy W.J. & Cobban W.A. (1990).- Cenomanian ammonite faunas from the Woodbine Formation and lower part of the Eagle Ford Group, Texas.- Palaeontology, London, vol. 33, p. 75-154.

Kennedy W.J. & Simmons M.D. (1991).- Mid-Cretaceous ammonites and associated microfossils from the Central Oman Mountains.- Newsletters on Stratigraphy, Stuttgart, vol. 25, p. 127-154.

Kennedy W.J., Landman N.H. & Cobban W.A. (1998a).- Engonoceratid ammonites from the Glen Rose limestone, Walnut clay, Goodland limestone, and Comanche Peak limestone (Albian) in Texas.- American Museum Novitates, New York, n° 3221, 40 p.

Kennedy W.J., Cobban W.A., Gale A.S., Hancock J.M. & Landman N.H. (1998b).- Ammonites from the Weno Limestone (Albian) in Northeast Texas.- American Museum Novitates, New York, n° 3236, 46 p.

Kennedy W.J., Hancock J.M., Cobban W.A. & Landman N.H. (2004).- A revision of the ammonite types described in F. Roemer's Die Kreidebildungen von Texas und ihre organishen Einschlüsse.- Acta Geologia Polonica, Warszawa, vol. 54, p. 433-445.

Kennedy W.J. (2004).- Ammonites from the Pawpaw Shale (Upper Albian) in northeast Texas.- Cretaceous Research, London, vol. 25, p. 865-905.

Kennedy W.J., Cobban W.A., Hancock J.M. & Gale A.S. (2005).- Upper Albian and Lower Cenomanian ammonites from the Main Street Limestone, Grayson Marl and Del Rio Clay in northeast Texas.- Cretaceous Research, London, vol. 26, p. 349-428.

Klinger H.C. & Kennedy W.J. (1989).- Cretaceous faunas from Zululand and Natal, South Africa: The ammonite family Placenticeratidae Hyatt, 1900; with comments on the systematic position of the genus Hypengonoceras Spath, 1924.- Annals of the South African Museum, Cape Town, vol. 98, p. 241-408.

Klug C., Schatz W., Korn D. & Reisdorf A.G. (2005).- Morphological fluctuations of ammonoid assemblages from the Muschelkalk (Middle Triassic) of the Germanic Basin - indicators of their ecology, extinctions, and immigrations.- Palæogeography, Palæoclimatology, Palæoecology, Amsterdam, vol. 221, p. 7-34.

Knechtel M.M., Richards E.F. & Rathbun M.J. (1947).- Mesozoic fossils of the Peruvian Andes.- Studies in Geology, Johns Hopkins University, Baltimore, vol. 15, 150 p.

Kogbe C.A. & Méhes K. (1986).- Micropaleontology and biostratigraphy of the coastal basins of West Africa.- Journal of African Earth Sciences, Oxford, (Special Series), vol. 4, p. 1-102.

Korn D., Ebbighausen V., Bockwinkel J. & Klug C. (2003).- The A-mode sutural ontogeny in prolecanitid ammonoids.- Palaeontology, London, vol. 46, p. 1123-1132.

Kossmat F. (1895).- Untersuchungen über die Südindische Kreideformation.- Beiträge zur Paläontologie und Geologie Österreich-Ungarns und des Orients, Wien, Band 9, p. 97-203.

Krause P.G.L.W. (1902).- Die Fauna der Kreide von Temojoh in West-Borneo.- Sammlungen des Geologisches Reichs-Museums in Leiden, (series I), vol. 7, p. 1-28.

Krassilov V. & Shuklina S. (2008).- Arthropod trace diversity on fossil leaves from the mid-Cretaceous of Negev, Israel.- Alavesia, Vitoria-Gasteiz, vol. 2, p. 239-245.

Kullmann J. & Wiedmann J. (1970).- Significance of sutures in phylogeny of Ammonoidea.- Paleontological Contributions of the University of Kansas, Lawrence, vol. 47, p. 1-32.

Latil J.-L. (1989).- Les genres Engonoceras Neumayr et Uhlig, 1881 et Hypengonoceras Spath, 1922 dans l'Albien supérieur (z. à dispar) de Salazac, Gard, France.- Revue de Paléobiologie, Genève, vol. 8, p. 51-63.

Latil J.-L. (2008).- A revision of Amaltheus Ebrayi de Loriol, 1882, type species of the genus Parengonoceras Spath, 1924.- Revue de Paléobiologie, Genève, vol. 27, p. 249-267.

Lehmann J. & Murphy M.A. (2001).- A new placenticeratid ammonite from the Albian (Lower Cretaceous) of California and the inferred history of some placenticeratid and engonoceratid ammonites.- Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, Stuttgart, vol. 2001, n° 6, p. 343-358.

Lehmann J. & Herbig H-G. (2009).- Late Cretaceous ammonites from the Bou Angueur Syncline (Middle Atlas, Morocco) - stratigraphic and paleobiogeographic implications.- Palaeontographica A, Stuttgart, vol. 289, p. 45-87.

Lehmann J., Heldt M., Bachmann M. & Negra M.E.H. (2009).- Aptian (Lower Cretaceous) biostratigraphy and cephalopods from north central Tunisia.- Cretaceous Research, London, vol. 30, p. 895-910.

Lewy Z. (1981).- A Late Albian Hypengonoceras (Ammonoidea) from the 'Bentonite-Bed' at Makhtesh Ramon, Southern Israel.- Israel Journal of Earth Sciences, Tel Aviv, vol. 30, p. 35-38.

Lissón C.I. (1908).- Contribución al conocimiento sobre algunos ammonites del Perú.- Tipografía el Perú, Lima, 22 p.

Lissón C.I. (1925).- Algunos fósiles del Perú.- Boletin de la Sociedad Geológica del Perú, Lima, vol. 1, p. 23-30.

Lopez-Horgue M., Owen H.G., Aranburu A., Fernandez-Mendiola P.A. & Garcia-Mondéjar J. (2009).- Early Late Albian (Cretaceous) of the central region of the Basque-Cantabrian Basin, northern Spain: biostratigraphy based on ammonites and orbitolinids.- Cretaceous Research, London, vol. 30, p. 385-400.

Loriol P. de (1882).- Études sur les faunes des couches du Gault de Cosne (Nièvre).- Mémoires de la Société Paleontologique de Suisse, Genève, vol. 9, p. 1-118.

Luppov N.P. & Mikhailov N.P. (1958).- Superfamily Engonocerataceae. In: Luppov N.P. & Drushchits V.V. (eds.), Fundamentals of palaeontology: Molluscs - Cephalopods II.- Gosudarstvenniye Nauchno-Tekhnicheskoe Izdatel'stvo, p. 125-128 [in Russian].

Mahmoud G.I. (1955).- Études paléontologiques sur la faune crétacique du massif du Moghara (Sinaï, Égypte).- Publications de l'Institut du Désert d'Égypte, Héliopolis, Le Caire, vol. 8, 192 p.

Mancini E.A. (1979).- Late Albian and Early Cenomanian Grayson ammonite biostratigraphy in North-Central Texas.- Journal of Paleontology, Tulsa, vol. 53, p. 1013-1022.

Mancini E.A. (1982).- Early Cenomanian cephalopods from the Grayson Formation of north-central Texas.- Cretaceous Research, London, vol. 3, p. 241-259.

Martínez R., Grauges A. & Salas R. (1994).- Distribución de los ammonites del Cretácico inferior de la Cordillera Costera Catalana e Ibérica Oriental.- Cuadernos de Geología Ibérica, Madrid, vol. 18, p. 337-354.

Marzouk L. & Ben-Youssef M. (2008).- Relative sea-level changes of the Lower Cretaceous deposits in the Chotts area of southern Tunisia.- Turkish Journal of Earth Sciences, Ankara, vol. 17, p. 835-845.

Mas J.R. & Wiedmann J. (1980).- Ammoniten und Alter der Mittelkreide-Transgression in der westlichen Provinz Valencia, Spanien.- Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, Stuttgart, vol. 159, p. 256-272.

Matsumoto T. (1954).- The Cretaceous System in the Japanese Islands.- Japan Society for the Promotion of Science, Tokyo, 324 p.

Matsumoto T. & Kanmera T. (1964).- Hinagu.- Geological Map of Japan, scale 1:50,000, Tokyo, Explanatory Text, 147 p.

Matsumoto T., Kanmera T. & Ohta Y. (1980).- Cephalopod faunule from the Cretaceous Yatsushiro Formation (Kyushu) and its implications.- Transactions and Proceedings of the Palaeontological Society of Japan, Tokyo, (new series), vol. 118, p. 325-338.

Meister C. & Abdallah H. (1996).- Les ammonites du Cénomanien supérieur et du Turonien inférieur de la région de Gafsa-Chotts, Tunisie du Centre-Sud.- Géobios, Villeurbanne, vol. 29, p. 3-49.

Meister C. & Abdallah H. (2005).- Précision sur les successions d'ammonites du Cénomanien-Turonien dans la région de Gafsa, Tunisie du Centre-Sud.- Revue de Paléobiologie, Genève, vol. 24, p. 111-199.

Meister C. & Rhalmi M. (2002).- Quelques ammonites du Cénomanien-Turonien de la région d'Errachidia-Boudnid-Erfoud (partie méridionale du Haut Atlas Central, Maroc).- Revue de Paléobiologie, Genève, vol. 21, p. 759-779.

Meister C., Alzouma K., Lang J. & Mathey B. (1992).- Les ammonites du Niger (Afrique occidentale) et la transgression transsaharienne au cours du Cénomanien-Turonien.- Géobios, Villeurbanne, vol. 25, p. 55-100.

Meister C., Alzouma K., Lang J., Mathey B. & Pascal A. (1994).- Nouvelles données sur les ammonites du Niger oriental (Ténéré, Afrique occidentale) dans le cadre de la transgression du Cénomanien-Turonien.- Géobios, Villeurbanne, vol. 27, p. 189-219.

Monnet C., Bucher H., Escarguel G. & Guex J. (2003a).- Cenomanain (early Late Cretaceous) ammonoid faunas of Western Europe. Part II: diversity patterns and the end-Cenomanain anoxic event.- Eclogae Geologicae Helvetiae, Basel, vol. 96, p. 381-398.

Monnet C., Bucher H., Guex J. & Escarguel G. (2003b).- Cenomanian ammonoid diversity patterns and the end-Cenomanian anoxic event. In: Mesozoic paleoceanography.- Séance spécialisée de la Société géologique de France, (Paris, 10-11 juillet 2003), Abstract Volume, p. 22.

Moreau P., Francis I.H. & Kennedy W.J. (1983).- Cenomanian ammonites from northern Aquitaine.- Cretaceous Research, London, vol. 4, p. 317-339.

Moreman W.L. (1942).- Paleontology of the Eagle Ford Group of North and Central Texas.- Journal of Paleontology, Tulsa, vol. 16, p. 192-220.

Moreno-Bedmar J.A., Bulot L., Latil J.-L., Martínez R., Ferrer O., Bover-Arnal T. & Salas R. (2008a).- Precisiones sobre la edad de la base de la Fm. Escucha, mediante ammonoideos, en la subcuenca de la Salzedella, Cuenca del Maestrat (E Cordillera Ibérica).- Geo-Temas, Madrid, vol. 10, p. 1269-1272.

Moreno-Bedmar J.A., Martínez R. & Abdallah H. (2008b).- Consideraciones bioestratigráficas sobre los ammonites albienses de la sección del Jebel Naimia, Cadena norte de los Chotts (Túnez). In: Ruiz-Omenaca J.I., Pinuela L. & García-Ramos J.C. (eds.), XXIV Jornadas de la Sociedad Española de Paleontología.- Museo del Jurásico de Asturias, Colunga, Spain, p. 160-161.

Moret L. & Mahmoud G.I. (1955).- Nouvelles observations stratigraphiques et paléontologiques sur l'Albien du massif du Moghara (Sinai-Égypte).- Travaux du Laboratoire de Géologie de Grenoble, vol. 31, p. 269-274.

Mouty M. & Gauthier H. (1999).- Mid-Cretaceous ammonites from the coastal chain of Syria. In: Histon K. (ed.), Cephalopods - Present and Past.- Fifth International Symposium, (Vienna, 6-9 September 1999), Abstract Volume, Geologische Bundesanstalt, Vienna, p. 88.

Mouty M., Al-Maleh A.K. & Laban H. (2003).- Le Crétacé moyen de la chaîne des Palmyrides (Syrie centrale).- Geodiversitas, Paris, vol. 25, p. 429-443.

Neumayr M. & Uhlig V. (1881).- Ueber Ammonitiden aus den Hilsbildungen Norddeutschlands.- Palaeontographica, Stuttgart, Band 27, p. 129-203.

Novas F.E., Dalla Vecchia F. & Pais D.F. (2005).- Theropod pedal unguals from the Late Cretaceous (Cenomanian) of Morocco, Africa.- Revista del Museo Argentino de Ciencias Naturales, Buenos Aires, (new series), vol. 7, p. 167-175.

Orbigny A.C.V.D. d' (1840-1842).- Paléontologie française, terrains crétacés, I - Céphalopodes.- Masson édit., Paris, 662 p. + 148 Pls.

Owen H.G. (1999).- Correlation of Albian European and Tethyan ammonite zonations and the boundaries of the Albian Stage and substages: some comments.- Scripta Geologica, Amsterdam, Special Issue, vol. 3, p. 129-149.

Owen H.G. & Mutterlose J. (2006).- Late Albian ammonites from offshore Suriname: implications for biostratigraphy and palaeobiogeography.- Cretaceous Research, London, vol. 27, p. 717-727.

Owen H.G. (2007).- Ammonite biostratigraphy of the Albian in the Kirchrode II borehole, Hannover, Germany.- Cretaceous Research, London, vol. 28, p. 921-938.

Packard E.L. (1956).- An Engonoceras from Central Oregon.- Journal of Paleontology, Tulsa, vol. 30, p. 398-402.

Page K.N. (1996).- Mesozoic Ammonoids in space and time. In: Landman N.H., Tanabe K. & Davis R.A. (eds.), Ammonoid paleobiology.- Topics in Geobiology, Plenum Press, New York, vol. 13, p. 755-794.

Peron A. & Thomas P. (1890).- Description des invertébrés fossiles des terrains crétacés de la région sud des Hauts-Plateaux de la Tunisie recueillis en 1885 et 1886 par P. Thomas.- Exploration scientifique de la Tunisie, Imprimerie nationale, Paris, 103 p.

Pervinquière L. (1907).- Études de paléontologie tunisienne. I. Céphalopodes des terrains secondaires; système crétacique.- Carte géologique de la Tunisie, Rudeval, Paris, 438 p.

Pervinquière L. (1910).- Sur quelques Ammonites du Crétacé algérien.- Mémoires de la Société Géologique de France, Paris, n° 42, (Paléontologie), vol. XVII, fasc. 2-3, 86 p.

Pritchett A.H. (1905).- Fossil Cephalopoda described by Hyatt and Cragin, in the Museum of the University of Texas.- The Biological Bulletin, Woods Hole, vol. 8, p. 365-366.

Pucéat E., Lécuyer C., Sheppard S.M.F., Dromart G., Reboulet S. & Grandjean P. (2003).- Thermal evolution of Cretaceous marine waters inferred from oxygen isotope composition of fish tooth enamels.- Paleoceanography, Washington, vol. 18, p. 7.1-7.12.

Rawson P.F. (1981).- Early Cretaceous ammonite biostratigraphy and biogeography. In: House M.R. & Senior J.R. (eds.), The Ammonoidea: the evolution, classification, mode of life and geological usefulness of a major fossil group.- The Systematics Association, Academic Press, London, Special Volume, vol. 18, p. 499-529.

Reboulet S., Giraud F. & Proux O. (2005).- Ammonoid abundance variations related to changes in trophic conditions across the Oceanic Anoxic Event 1d (Latest Albian, SE France).- Palaios, Lawrence, vol. 20, p. 121-141.

Reeside J.B. & Weymouth A.A. (1931).- Mollusks from the Aspen Shale (Cretaceous) of southwestern Wyoming.- Proceedings of the United States National Museum, Washington, vol. 78, article 17, p. 1-24.

Renz O. (1970).- Über die Gattungen Parengonoceras Spath, Knemiceras Böhm und Neophlycticeras Spath (Ammonoidea) aus den Anden Venezuelas.- Eclogae Geologicae Helvetiae, Basel, vol. 63, p. 1021-1057.

Renz O. (1982).- The Cretaceous ammonites of Venezuela.- Maraven S.A., Caracas, 132 p.

Reyment R. & Kennedy W.J. (1991).- Phenotypic plasticity in a Cretaceous ammonite analyzed by multivariante statistical methods: A methodological study. In: Hecht M.K., Wallace B. & Macintyre J. (eds.), Evolutionary biology.- Plenum Press, New York, p. 411-426.

Reyment R. (2008).- A review of the post-mortem dispersal of cephalopod shells.- Palaeontologia Electronica, London, vol. 11, n° 3, 12A, 13 p.

Robert E., Bulot L.G., Dhondt A., Jaillard É., Villagómez R., Rivadeneira M. & Paz M. (1998).- La transgresión de cretáceo inferior en el margen andino (Perú y Ecuador): datos preliminares.- Boletín de la Sociedad Geológica del Perú, Lima, vol. 88, p. 73-86.

Robert E. (2002).- La transgression albienne dans le Bassin Andin (Pérou) : Biostratigraphie, paléontologie (ammonites) et stratigraphie séquentielle.- Strata, Toulouse, vol. 38, p. 1-380.

Robert E., Bulot L.G., Jaillard É. & Peybernés B. (2003).- Revision bioestratigrafica del Albiano inferior a superior basal en La Cuenca Andina Peruana (Peru central y norte).- Boletín Sociedad Geológica del Perú, Lima, vol. 95, p. 59-74.

Robert E. & Bulot L.G. (2004).- Origin, phylogeny, faunal composition, and stratigraphical significance of the Albian Engonoceratidae (Pulchelliaceae, Ammonitina) of Peru.- Journal of South American Earth Sciences, Oxford, vol. 17, p. 11-23.

Roman F. (1938).- Les ammonites jurassiques et crétacées. Essai de genera.- Masson et Cie, Paris, 554 p.

Sarkar S.S. (1966).- On Placenticeras mintoi Vredenburg, 1908, from the Bagh Beds (Cretaceous) of India.- Paläontologische Zeitschrift, Stuttgart, vol. 40, p. 144-146.

Schindewolf O.H. (1968).- Studien zur Stammesgeschichte der Ammoniten. Lieferung 7.- Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse, Akademie der Wissenschaften und der Literatur in Mainz, Frankfurt am Main, vol. 3, p. 733-901.

Schluter D. (2000).- Ecological character displacement in adaptive radiation.- The American Naturalist, Chicago, vol. 156, p. S4-S16.

Scott G. (1940a).- Paleoecological factors controlling distribution and mode of life of Cretaceous ammonoids in the Texas area.- Journal of Paleontology, Tulsa, vol. 14, p. 299-323.

Scott G. (1940b).- Cephalopods from the Cretaceous Trinity Group of the South-Central United States.- The University of Texas, Publication, Austin, vol. 3945, p. 969-1107.

Scott R.W. (1970).- Paleoecology and paleontology of the Lower Cretaceous Kiowa Formation, Kansas.- Paleontological Contributions of the University of Kansas, Lawrence, vol. 52, p. 1-94.

Scott R.W. & González-León C. (1991).- Paleontology and biostratigraphy of Cretaceous rocks, Lampazos area, Sonora, Mexico. In: Pérez-Segura E. & Jacques-Ayala C. (eds.), Studies of Sonoran Geology.- Geological Society of America, Special Papers, Boulder, vol. 254, p. 51-68.

Scott R.W. (2007).- Calibration of the Albian/Cenomanian boundary by ammonite biostratigraphy: U.S. Western Interior.- Acta Geologica Sinica, Beijing, vol. 81, p. 940-948.

Scott R.W., Benson D.G., Morin R.W., Shaffer B.L. & Oboh-Ikuenobe F.E. (2003).- Integrated Albian-Lower Cenomanian Chronostratigraphy Standard, Trinity River Section, Texas. In: Scott R.W. (ed.), Cretaceous Stratigraphy and Paleoecology, Texas and Mexico.- Perkins Memorial Volume, GCSSEPM Foundation Special Publications in Geology, Houston, CD, GCS211, n° 1, p. 277-334.

Scott R.W., Oboh-Ikuenobe F.E., Benson D.G. & Holbrook J.M. (2009).- Numerical age calibration of the Albian/Cenomanian boundary.- Stratigraphy, New York, vol. 6, p. 17-32.

Shigeta Y. (1993).- Post-hatching early life history of Cretaceous Ammonoidea.- Lethaia, Oslo, vol. 26, p. 133-145.

Shirazi M.P.N. (2008).- Calcareous algae from the Cretaceous of Zagros Mountain (SW Iran).- World Applied Sciences Journal, Cairo, vol. 4, p. 803-807.

Simone L.R.L. de (1994).- Fossil molluscs of Brazil.- Boletim do Instituto Geológico, São Paulo, vol. 11, p. 1-202.

Smith J.P. (1914).- Acceleration of development in fossil Cephalopoda.- Leland Stanford Junior University Publications, University Series, Stanford University, California, 30 p.

Sommermeier A. (1910).- Die Fauna des Aptien und Albien im nördlichen Perú. Partie I. Cephalopoden.- Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, Stuttgart, Beilage-band 30, p. 313-382.

Spath L.F. (1922).- On Cretaceous Ammonoidea from Angola collected by Professor J.W. Gregory, D.Sc., F.R.S.- Transactions of the Royal Society of Edinburgh, vol. 53, p. 91-160.

Spath L.F. (1924).- On a new ammonite (Engonoceras iris, sp. nov.) from the Gault of Folkestone.- The Annals and Magazine of Natural History, London, (Ninth Series), vol. 14, p. 504-508.

Spath L.F. (1930).- The fossil fauna of the Sanama Range and some neighbouring areas. Part 5. The Lower Cretaceous Ammonoidea with notes on Albian Cephalopoda from Hazara.- Palaeontologia Indica, (New Series), Geological Survey of India, Memoirs, Calcutta, vol. XV, p. 51-66.

Spath L.F. (1931).- A monograph of the Ammonoidea of the Gault. Part VIII.- Monograph of the Palaeontographical Society, London, vol. LXXXIII, n° 379, p. 313-378.

Staff H. von & Eck O. (1908).- Über die Notwendigkeit einer Revision des Genus Neolobites Fischer.- Sitzungsberichte der Gesellschaft Naturforschender Freunde zu Berlin, Jahre 1908, p. 253-286.

Stephenson L.W. (1952).- Larger invertebrate fossils of the Woodbine Formation (Cenomanian) of Texas.- U.S. Geological Survey, Professional Paper, Washington, vol. 242, 226 p.

Stilwell J.D. & Gallagher S.J. (2009).- Biostratigraphy and macroinvertebrate palaeontology of the petroleum-rich Belfast Mudstone (Sherbrook Group, uppermost Turonian to mid-Santonian).- Cretaceous Research, London, vol. 30, p. 873-884.

Szives O., Csontos L., Bujtor L. & Fozy I. (2007).- Aptian-Campanian ammonites of Hungary.- Geologica Hungarica, Budapest, (Series palaeontologica), vol. 57, p. 1-187.

Takashima R., Gautam P. & Nishi H. (2006).- Recent advances in research on terrestrial and marine sequences from the mid-Cretaceous Oceanic Anoxic Events (OAEs).- Scientific Drilling, Washington, n° 2, p. 50-51.

Tawadros E.E. (2001).- Geology of Egypt and Lybia.- A.A. Balkema Publishers, Rotterdam, 461 p.

Vredenburg E.W. (1907).- The Ammonites of the Bagh Beds.- Records of the Geological Survey of India, Calcutta, vol. 36, p. 109-125.

Ward P.D. & Signor P.W. (1983).- Evolutionary tempo in Jurassic and Cretaceous ammonites.- Paleobiology, Lawrence, vol. 9, p. 183-198.

Weissbrod T. (2002).- Stratigraphy and correlation of the Lower Cretaceous exposures across the Dead Sea Transform with emphasis on tracing the Amir Formation in Jordan.- Israel Journal of Earth Sciences, Jerusalem, vol. 51, p. 55-78.

Westermann G.E.G. (1990).- New developments in ecology of Jurassic-Cretaceous ammonoids. In: Pallini G., Cecca F., Cresta S. & Sanantonio M. (eds.), Fossili, evoluzione, ambiente.- Atti II° Convegno Internazionale (Pergola, 25-30 Ottobre 1987), Technostampa, Ostra Vetere, p. 459-478.

Westermann G.E.G. (1996).- Ammonoid life and habitat. In: Landman N.H., Tanabe K. & Davis R.A. (eds.), Ammonoid paleobiology.- Topics in Geobiology, Plenum Press, New York, vol. 13, p. 607-707.

Wiedmann J. (1979).- Mid Cretaceous events. Iberian field conference 77. Guide II Partie. Itinéraire géologique à travers le Crétacé moyen des Chaînes Vascogotiques et Celtibériques (Espagne du Nord).- Cuadernos de Geología Ibérica, Madrid, vol. 5, p. 127-214.

Wiese F. & Schulze F. (2005).- The upper Cenomanian (Cretaceous) ammonite Neolobites vibrayeanus (d'Orbigny, 1841) in the Middle East: taxonomic and palaeoecologic remarks.- Cretaceous Research, London, vol. 26, p. 930-946.

Wilmsen M. (1996).- The Cenomanian of northern Cantabria (N-Spain): facies development and sequential subdivision. In: Kuhnt W. (ed.), Jost Wiedmann Symposium.- Cretaceous stratigraphy, paleobiology and paleobiogeography (Tübingen, 7-10 March 1996), Abstracts, University of Kiel, p. 181-187.

Wood G.D. & Alemán A. (1998).- Palynology, palynofacies, geochemistry and invertebrate paleontology of the Upper Cretaceous Napo Formation, Oriente Basin, Ecuador.- Thirty-first Annual AASP Meeting (October 27-31, 1998, Ensenado, Baja California, Mexico), Abstracts, p. 52.

Wright C.W. (1952).- A classification of Cretaceous ammonites.- Journal of Paleontology, Tulsa, vol. 26, p. 213-222.

Wright C.W. (1963).- Cretaceous ammonites from Bathurst Island, northern Australia.- Palaeontology, London, vol. 6, p. 597-614.

Wright C.W., Calloman J.H. & Howarth M.K. (eds.) (1996).- Cretaceous Ammonoidea. In: Kaesler R.L. (ed.), Mollusca 4 (revised).- Treatise on Invertebrate Paleontology, Geological Society of America, New York; University of Kansas, Lawrence, Part L, 362 p.

Yacobucci M.M. (2003).- Controls on shell shape in Acanthoceratid ammonites from the Cenomanian-Turonian Western Interior seaway. In: Harries P.J. (ed.), High-resolution approaches in stratigraphic paleontology.- Topics in Geobiology, Plenum Press, New York, vol. 21, p. 195-226.

Yacobucci M.M. (2004).- Neogastroplites meets Metengonoceras: morphological response of an endemic hoplitid ammonite to a new invader in the mid-Cretaceous Mowry Sea of North America.- Cretaceous Research, London, vol. 25, p. 927-944.

Young K. (1972).- Cretaceous paleogeography: implications of endemic ammonite faunas.- Bureau of Economic Geology, University of Texas Geological Circular, Austin, vol. 72, p. 1-13.

Zittel K.A. (1884).- Cephalopoda. In: Zittel K.A. (ed.), Handbuch der Paläontologie, Band 1, Abteilung 2, Lieferung 3.- Druck und Verlag von R. Oldenbourg, München und Leipzig, p. 329-522.

Zouaghi T., Bédir M., Abdallah H. & Inoubli M.H. (2009).- Seismic sequence stratigraphy, basin structuring, and hydrocarbon implications of Cretaceous deposits (Albian-Maastrichtian) in central Tunisia.- Cretaceous Research, London, vol. 30, p. 1-21.


Species Stratigraphical distribution Geographical distribution References
Glottoceras Hyatt, 1875 Albian South America  
1 andinum (Renz, 1970) Upper Albian Venezuela Renz, 1970
2 attenuatum Hyatt, 1875 ?Cenomanian Celendín, Peru Hyatt, 1903; Roman, 1938
Albian-Cenomanian Oriente Basin, Ecuador Wood & Aleman, 1998
Albian Une, Une Formation, Colombia Guerrero, 2002
Middle Albian northern Peru Knechtel et alii, 1947; Benavides-Cáceres, 1956
Lower Albian Peru Robert et alii, 2003; Robert & Bulot, 2004
3 bassleri (Knechtel in Knechtel et alii, 1947) Aptian En Huanco, Celendin, Peru Knechtel et alii, 1947
4 crassicostatum (Sommermeier, 1910) Middle Albian Peru Knechtel et alii, 1947
Lower-Middle Albian Pongo de Rentemo, Peru Robert et alii, 1998
5 crassinodosum (Sommermeier, 1910) Middle Albian Condebamba, northern Peru Sommermeier, 1910; Knechtel et alii, 1947
Lower-Middle Albian Peru Robert et alii, 2003; Robert & Bulot, 2004
6 gabbi (Hyatt, 1903) ?Cenomanian Quebrada de Huari, Peru Hyatt, 1903; Roman, 1938
Middle Albian Celendín, Sunchubamba, northern Peru Benavides-Cáceres, 1956
upper Lower Albian Peru Robert et alii, 2003; Robert & Bulot, 2004
7 gracilecostatum (Sommermeier, 1910) Lower Albian northern Peru Robert et alii, 2003
8 laraense (Renz, 1970) Middle Albian-Upper Albian Misahualli, Ecuador; Venezuela Bulot et alii, 2007
9 largum Robert, 2002 Lower Albian La Cuenca, Peru Robert et alii, 2003
10 libertadense (Breistroffer, 1952) Albian Colombia Breistroffer, 1952
11 moorei (Knechtel in Knechtel et alii, 1947) upper Middle Albian Peru Robert et alii, 2003; Robert & Bulot, 2004
Middle Albian Peru Knechtel et alii, 1947
Misahualli, Ecuador Bulot et alii, 2007
12 ollonense (Gabb, 1877) Lower Albian La Cuenca, Peru Robert et alii, 2003
Sunchubamba, northern Peru Benavides-Cáceres, 1956; Robert et alii, 1998
13 ovale (Benavides-Cáceres, 1956) Middle Albian Uchupata, northern Peru Benavides-Cáceres, 1956
14 pacificum (Benavides-Cáceres, 1956) Lower Albian Celendín, Peru Benavides-Cáceres, 1956
15 pegnai (Etayo-Serna, 1979) Cretaceous Colombia Etayo-Serna, 1979
16 raimondii (Lisson, 1908) Middle Albian Cajamarca, Sihuas, Pomachaca, northern Peru Sommermeier, 1910; Knechtel et alii, 1947; Benavides-Cáceres, 1956; Robert et alii, 1998
upper Lower Albian Peru Robert et alii, 2003; Robert & Bulot, 2004
17 semicostatum (Sommermeier, 1910) Middle Albian Cochamarca, northern Peru Sommermeier, 1910; Knechtel et alii, 1947
upper Lower Albian Peru Robert et alii, 2003; Robert & Bulot, 2004
18 seminodosum (Sommermeier, 1910) Middle Albian Peru Robert & Bulot, 2004
19 sommermeieri (Knechtel in Knechtel et alii, 1947) Middle Albian Peru Knechtel et alii, 1947
Misahualli, Ecuador Bulot et alii, 2007
20 spinosum (Sommermeier, 1910) Middle Albian northern Peru Knechtel et alii, 1947
Lower Albian (mammillatum Zone) Bathurst Island, North Australia Wright, 1963
21 tardum (Benavides-Cáceres, 1956) Middle Albian Sihuas, northern Peru Benavides-Cáceres, 1956
Lower Albian La Cuenca, Peru Robert et alii, 2003
22 triangulare (Benavides-Cáceres, 1956) Middle Albian Sihuas, northern Peru Benavides-Cáceres, 1956
23 typicum (Sommermeier, 1910) Middle Albian northern Peru Robert & Bulot, 2004

Engonoceras Neumayr & Uhlig, 1881 Lower Albian-Middle Cenomanian Tethyan  
1 belviderense (Cragin, 1894) Lower Cretaceous Belvidere, Kansas Hyatt, 1903; Cobban, 1987
Upper Albian Texas, USA R.W. Scott et alii, 2003
Neocomian Kansas, USA R.W. Scott, 1970; Kennedy et alii, 1998a
Middle-Upper Albian Sonora, Mexico Roman, 1938; R.W. Scott & González-León, 1991
2 commune Hyatt, 1903 Cretaceous Texas Hyatt, 1903
3 complicatum Hyatt, 1903 Albian Texas Hyatt, 1903; Kennedy et alii, 1998a
Upper Albian El Mizab, Meknes, Atlas, Morocco Collignon & Faure-Murat, 1968
4 elegans Kennedy et alii, 1998a Albian Texas Kennedy et alii, 1998a
5 emarginatum (Cragin, 1893) Albian Pleasant Point, Texas, USA Hyatt, 1903
6 gibbosum Hyatt, 1903 Albian Texas, USA Hyatt, 1903; Kennedy et alii, 1998a
Middle Albian R.W. Scott et alii, 2003
7 grimsdalei Spath, 1931 Upper Albian Weymouth, Dorset, England Spath, 1931; Benavides-Cáceres, 1956
8 hilli Böhm, 1898 Albian Texas, USA Kennedy et alii, 1998a
North Peruvian Andes Robert et alii, 2003
Middle-Upper Albian Texas, USA R.W. Scott et alii, 2003
9 iris Spath, 1924 Middle Albian Folkestone, England Roman, 1938; Spath, 1924
10 jezzinense Basse, 1940 Albian Djebel Tebega, Tunisia Arnould-Saget, 1956
Jezzine, Lebanon Basse, 1940
11 khenchelaensis (Basse, 1940) Albian-Cenomanian Syria Kennedy et alii, 1998a
Albian Bhamdoum, Lebanon Casey, 1961
12 olgaluciae Etayo-Serna, 1979 Middle Albian Colombia Etayo-Serna, 1979
13 pierdenalis (Buch, 1848) Upper Cretaceous Fredericksburg, Texas Buch, 1848
Albian Texas Hyatt, 1903; Roman, 1938
Upper Albian Chihuahua, Mexico Böse, 1910
Middle Albian Sonora, Mexico González-León, 1988; R.W. Scott & González-León, 1991
14 pinax (Krause, 1902) Cenomanian Temojoh, West Borneo Krause, 1902; Breistroffer, 1940; Haile, 1955
15 retardum Hyatt, 1903 lowest Cenomanian Pottsboro, Texas, USA Hyatt, 1903; Cobban & Kennedy, 1989; Kennedy et alii, 2005
16 serpentinum (Cragin, 1900) Lower Cenomanian Texas Mancini, 1982
Upper Albian Roman, 1938; Wright et alii, 1996
uppermost Albian (dispar Zone) Hyatt, 1903; Kennedy et alii, 1998b; Kennedy, 2004; Kennedy et alii, 2005
17 subjectum Hyatt, 1903 uppermost Albian (dispar Zone) Texas Hyatt, 1903; Kennedy et alii, 1998b
18 stolleyi Böhm, 1898 Albian Texas Kennedy et alii, 1998a
Upper Albian Chihuahua, Mexico Böse, 1910
Middle-Upper Albian Sonora, Mexico R.W. Scott & González-León, 1991
Middle Albian   González-León, 1988
  La Cuenca, Peru Robert et alii, 2003
19 thomasi Pervinquière, 1907 Cenomanian Rekkame, Middle Atlas, Morocco Lehmann & Herbig, 2009
U. Albian-L. Cenomanian Guelta, Tunisia Roman, 1938; Latil, 1989
20 toussainti Pervinquière, 1907 U. Albian-L. Cenomanian Tebaga, Tunisia Roman, 1938; Latil, 1989
21 uddeni (Cragin, 1900) Comanche series, Kiowa shale Kansas, USA Hyatt, 1903
Middle Albian Sonora, Mexico González-León, 1988
22 vicorpense (Basse, 1940) Albian-Cenomanian Syria Kennedy et alii, 1998a
Upper Albian Djebel Naimia, Chotts, Tunisia Moreno-Bedmar et alii, 2008b
23 wilkinsoni Packard, 1956 ?Upper Albian Oregon, USA Packard, 1956
24 zumoffeni (Basse, 1940) Albian-Cenomanian Syria Kennedy et alii, 1998a

Neolobites Fischer, 1882 Cenomanian Tethyan  
1 bassleri Boit, 1926 Cenomanian Caminaca, Peru Boit, 1926; Cabrera La Rosa & Petersen, 1936
Middle-Upper Cenomanian Altiplano, Peru Jaillard, 1995; Robert et alii, 1998
2 brancai Staff & Eck, 1908 U. Cenomanian- L. Turonian Egypt Staff & Eck, 1908; Eck, 1914; Douvillé, 1928
Upper Cenomanian Central High Atlas, Morocco Meister & Rhalmi, 2002
Upper Cenomanian Gafsa, Central Tunisia Meister & Abdallah, 2005
3 bussoni Collignon, 1965 Cenomanian Tinrhert, Sahara, Algeria Collignon, 1965; Amard et alii, 1981
Upper Cenomanian Ourém, Portugal Berthou & Lauverjat, 1978, 1979
4 choffati Hyatt, 1903 Cenomanian Portugal Hyatt, 1903
5 fourtaui Pervinquière, 1907 Cenomanian Egypt, Tunisia Pervinquière, 1907; Greco, 1915
Upper Cenomanian  Tarfa, Arabic Desert Douvillé, 1928
Tinrhert, Sahara, Algeria Collignon, 1965; Amard et alii, 1981
Middle-Upper Cenomanian Palmyrids, Central Syria Mouty et alii, 2003
6 isidis Greco, 1915 Cretaceous Egypt Greco, 1915
Upper Cenomanian Gafsa, Central Tunisia Meister & Abdallah, 1996
7 kummeli Benavides-Caceres, 1956 base Upper Cenomanian Celendín, Northern Peru Benavides-Cáceres, 1956
Bolivia Branisa, 1968; Jaillard & Sempere, 1992
8 maresi (Coquand, 1862) Cenomanian Egypt Coquand, 1862; Greco, 1915; Kennedy & Juignet, 1984
9 medeninensis Basse, 1954 Upper Cenomanian Tunisia Basse, 1954; Wiese & Schulze, 2005
10 peroni Hyatt, 1903 Upper Cenomanian Tinrhert, Sahara, Algeria Pervinquière, 1910; Collignon, 1965; Amard et alii, 1981
Cenomanian North Africa Hyatt, 1903
Egypt Eck, 1914; Douvillé, 1928
Provence (France), Tunisia Roman, 1938
11 pervinquieri Staff & Eck, 1908 Upper Cenomanian Egypt Staff & Eck, 1908; Wiese & Schulze, 2005
schweinfurthi Staff & Eck, 1908 U. Cenomanian-L. Turonian Egypt Staff & Eck, 1908; Eck, 1914; Douvillé, 1928
Turonian Egypt Eck, 1910
12 vibrayeanus (d'Orbigny, 1841) Cretaceous Vibraye, Sarthe, France d'Orbigny, 1841; Buch, 1848
Cenomanian Celendín, Northern Peru Boit, 1926
El Kisba, High Atlas, Morocco Lehmann & Herbig, 2009
France Gillard, 1942; Wright et alii, 1996
France, Portugal Hyatt, 1903
Upper Cenomanian Jordan Aly et alii, 2008
Central Oman Kennedy & Simmons, 1991
Estremadure, Lisbon, Portugal Berthou et alii, 1979
Vouillac, France Moreau et alii, 1983
Tinrhert, Sahara, Algeria Collignon, 1965; Amard et alii, 1981; Amédro et alii, 1996
Egypt, Jordan Wiese & Schulze, 2005
Gafsa, Central Tunisia Meister & Abdallah, 2005
Tanout, Niger Meister et alii, 1992
Burgos, Spain Wiedmann, 1979

Knemiceras Böhm, 1898 ?Upper Aptian-Albian Tethyan  
as Knemiceras sp. Upper Albian Río Aguamulac, Huescar, Spain Braga et alii, 1982
Middle Albian Aube, France Amédro & Destombes, 1984
1 aegyptiacum Mahmoud, 1955 Upper Albian-Lower Cenomanian Kazhdumi, southern Iran Collignon, 1981
Upper Albian Gafsa, Central Tunisia Abdallah et alii, 2008
Oued Zitoun, North Tunisia Kogbe & Méhes, 1986
2 arambourgi Basse, 1940 Cretaceous Syria, Lebanon Basse, 1940; Kennedy & Simmons, 1991
3 collignoni Mahmoud, 1955 Cretaceous Sinai, Egypt Mahmoud, 1955
Upper Albian-Lower Cenomanian Kazhdumi, southern Iran Collignon, 1981
4 compressum Hyatt, 1903 ?Cenomanian Beirut, Lebanon Hyatt, 1903; Roman, 1938
Albian Nar, Kartang, Jahrum, southern Iran Collignon, 1981
Upper Albian Venezuela Renz, 1970
Oued Zitoun, North Tunisia Kogbe & Méhes, 1986
Djebel Naimia, Chotts, Tunisia Moreno-Bedmar et alii, 2008b; Marzouk & Ben-Youssef, 2008
Middle Albian Bilbao, northern Spain Lopez-Horgue et alii, 2009
5 douvillei Basse, 1940 Cretaceous Djebel Dourra Syria Basse, 1940
Upper Albian-Lower Cenomanian Kazhdumi, southern Iran Collignon, 1981
Upper Albian Lurestan, Iran Bulot, 2007
6 dubertreti Basse, 1940 Cretaceous Djebel Dourra, Syria Basse, 1940
Albian Mderedj, Lebanon Casey, 1961
Upper Albian Lurestan, Iran Bulot, 2007
Lower-Middle Albian Central Oman Kennedy & Simmons, 1991
7 flexiloculosum Basse, 1940 Cretaceous Syria Basse, 1940
Middle Albian Dead Sea, Israel Weissbrod, 2002
Lower Albian Guajira, NE Colombia Guerrero, 2002
8 iraniense Collignon, 1981 U. Albian-L. Cenomanian Kazhdumi, southern Iran Collignon, 1981
Middle-Upper Albian Bangestan, SW Iran Bulot, 2010
9 kazhdumiense Collignon, 1981 U. Albian-L. Cenomanian Kazhdumi, southern Iran Collignon, 1981
Middle-Upper Albian Bangestan, SW Iran Bulot, 2010
10 orientalis Mahmoud, 1955 Middle Albian Moghara, Egypt Mahmoud, 1955
11 persicum Collignon, 1981 U. Albian-L. Cenomanian Kazhdumi, southern Iran Collignon, 1981
Lower Albian Bangestan, Lurestan, Iran Bulot, 2007, 2010
12 rittmanni Mahmoud, 1955 Middle Albian Moghara, Egypt Mahmoud, 1955; Moret & Mahmoud, 1955; Tawadros, 2001
13 saadense (Peron & Thomas, 1890) Cretaceous Tunisia Peron & Thomas, 1890
Upper Albian Salazac, Gard, France Breistroffer, 1940; Latil, 1989; Amédro, 2008
Algeria Pervinquière, 1910; Roman, 1938; Chiplonker, 1941
14 saharae Collignon, 1965 Albian Tebaga de Kebili, South Tunisia Collignon, 1965
Sinai, Egypt Geyer et alii, 1997
15 ? sinaiticum Upper Albian Gafsa, Central Tunisia Abdallah et alii, 2008
16 spathi Mahmoud, 1955 U. Albian-L. Cenomanian Nar, Gavbasht, southern Iran Collignon, 1981
Upper Albian Oued Zitoun, North Tunisia Kogbe & Méhes, 1986
Lower Albian northern Sinai, Egypt Geyer et alii, 1997; Tawadros, 2001; Abu-Zied, 2008
Bangestan, SW Iran Bulot, 2010
17 subcompressum Hyatt, 1903 ? Cenomanian Gilead Mts. Jordan; Mt. Lebanon, Syria Hyatt, 1903; Geyer et alii, 1997
18 syriacum (Buch, 1848) Lower Cretaceous Lebanon Buch, 1848
Angola Douvillé, 1931; Roman, 1938
Cenomanian Mt. Lebanon, Syria Hyatt, 1903
U. Albian-L. Cenomanian Kazhdumi, southern Iran Collignon, 1981
Upper Albian Portugal Roman, 1938
Lurestan, Iran Bulot, 2007
Syria Wright et alii, 1996; Mouty et alii, 2003
Middle-Upper Albian northern Sinai, Egypt Geyer et alii, 1997
Jawan area, NW Iraq Horbury, 2006
Middle Albian Tebaga, central Tunisia Ben Youssef et alii, 1985
Moghara, Egypt Douvillé, 1916, 1928; Moret & Mahmoud, 1955
Dead Sea, Israel Weissbrod, 2002
Cajamarca, Uchupata, Peru Benavides-Cáceres, 1956; Robert et alii, 1998
Lower Albian northern Sinai, Egypt Abu-Zied, 2008
19 uhligi (Choffat, 1886) ? Cenomanian Portugal Hyatt, 1903; Roman, 1938
Upper Albian Santander, Cantabria, Spain Wilmsen, 1996
Teruel, Valencia, Spain Geyer, 1995a, 1995b
Estremadure, Lisbon, Portugal Chiplonkar, 1941; Berthou et alii, 1979, Collignon, 1981
Salinas (Angola); Moghara (Egypt) Douvillé, 1928, 1931
Lurestan, Iran Bulot, 2007
Middle-Upper Albian northern Sinai, Egypt Geyer et alii, 1997
Tebaga, central Tunisia Collignon, 1965
Muscat, Oman Immenhauser et alii, 2000
Lower Albian Lurestan, Iran Bulot, 2007
northern Sinai, Egypt Abu-Zied, 2008

Protengonoceras Hyatt, 1903 Lower/Middle Albian-?Lower Cenomanian Tethyan  
1 dufaurei Collignon, 1981 Lower Cenomanian Kazhdumi, southern Iran Collignon, 1981
2 gabbi (Böhm, 1898) Albian Sonora (Mexico), Texas Hyatt, 1903; Kennedy et alii, 1998a
Upper Albian northern Sinai, Egypt Abu-Zied, 2008
Middle Albian Texas Wright et alii, 1996
Peru Robert et alii, 1998
3 planum Hyatt, 1903 Upper Cretaceous Dallas County, Texas Hyatt, 1903; Moreman, 1942
4 ? prestati Collignon, 1981 U. Albian-L. Cenomanian Kazhdumi, southern Iran Collignon, 1981

Metengonoceras Hyatt, 1903 Middle Albian-Cenomanian cosmopolitan  
  as Epengonoceras sp. Upper Albian Lower Saxony Basin, Germany Owen, 2007
as Metengonoceras sp. uppermost Cenomanian Sahara, Africa Courville, 2007
lower Upper Cenomanian Sayreville, NJ, USA Cobban & Kennedy, 1990
1 acutum Hyatt, 1903 Upper Cenomanian North Central Texas Hyatt, 1903; Moreman, 1942; Kennedy, 1988; Kennedy & Cobban, 1990; R.W. Scott et alii, 2003
2 ambiguum Hyatt, 1903 Lower Cretaceous Texas, USA Hyatt, 1903
Albian Kennedy et alii, 1998a
Aptian-Albian Roman, 1938
3 arnaudi Grossouvre, 1912 Cenomanian Touvois, Vendée, France Gillard, 1942
Charentes, France Kennedy et alii, 1981
4 aspenanum (Reeside & Weymouth, 1931) Cenomanian Montana, Wyoming, USA Cobban & Kennedy, 1989; Yacobucci, 2004
uppermost Albian Montana, USA R.W. Scott et alii, 2003
5 bedoti (Grossouvre, 1912) Lower Cenomanian Vendée, France Gillard, 1942; Kennedy et alii, 1981; Kennedy & Juignet, 1984; Meister et alii, 1992
6 bravoense (Böse, 1928) Cenomanian [M. (P.) rhacioformis Zone] Texas Mancini, 1979
lowermost Cenomanian Texas, USA Kennedy et alii, 2005
Albian-Cenomanian Oriente Basin, Ecuador Wood & Aleman, 1998
7 ? dibbleyi Upper Cenomanian Ouled nail, Saharan Atlas, Algeria Herkat, 1999; Grosheny et alii, 2008
8 douvillei Grossouvre, 1912 Cenomanian Vendée, France Kennedy et alii, 1981
9 dumbli (Cragin, 1893) Cenomanian Texas, USA Moreman, 1942; Wright et alii, 1996
uppermost Cenomanian  Jordan Aly et alii, 2008
Benue trough, Nigeria Courville et alii, 1998
Upper Cenomanian Mts. Iguellala, Niger Meister et alii, 1992
Sinai, Egypt Aly & Abdel-Gawad, 2001
Le Mans, France Kennedy & Juignet, 1984
Angers, France Kennedy et alii, 1981
Middle-Upper Cenomanian Gafsa, Central Tunisia Meister & Abdallah, 2005
Colorado, USA Cobban & G.R. Scott, 1972
North Central Texas Kennedy & Cobban, 1990; R.W. Scott et alii, 2003
10 inscriptum Hyatt, 1903 Lower Cretaceous Texas, USA Hyatt, 1903
Upper Albian Wright et alii, 1996
Middle Albian Cobban & Kennedy, 1989
Albian Kennedy et alii, 1998a
Aptian-Albian Roman, 1938
11 nigeriensis Furon, 1935 Upper Cenomanian Niger Kennedy et alii, 1981
12 oliveirai Brito, 1967 Albian-Cenomanian Rio Fundo, Sergipe, Brazil Brito, 1986; Simone, 1994
13 teigenense Cobban & Kennedy, 1989 Cenomanian Montana, USA Cobban & Kennedy, 1989; Yacobucci, 2004
Lower Cenomanian Normandie, France Amédro et alii, 2002
U. Albian-lowermost Cenomanian Montana, USA R.W. Scott et alii, 2003
14 tolveiense Grossouvre, 1912 Cenomanian Vendée, France Kennedy et alii, 1981

Hypengonoceras Spath, 1922 Upper Albian Tethyan  
  as Hypengonoceras sp. Upper Albian Makhtesh Ramon, Israel Lewy, 1981
  as Hypengonoceras sp. ind. Upper Albian Salazac, Gard (France) Latil, 1989
1 chouberti Collignon, 1966 Upper Albian Tarfaya, Morocco Collignon, 1966; Klinger & Kennedy, 1989
2 decaryi Collignon, 1963 Upper Albian Madagascar Collignon, 1963
Zululand, Mozambique Förster, 1975; Kennedy & Klinger, 1979
Zufia, Navarra, Spain Wiedmann, 1979
3 fauremuretae Collignon, 1966 Upper Albian Tarfaya, Morocco Collignon, 1966; Klinger & Kennedy, 1989
4 ? ibericum Arias & Wiedmann, 1977 Albian Albacete, SE Spain Arias & Wiedmann, 1977; Klinger & Kennedy, 1989
5 tarfayense Collignon, 1966 Upper Albian Tarfaya, Morocco Collignon, 1966; Klinger & Kennedy, 1989
6 warthi (Kossmat, 1895) Albian Albacete, SE Spain Arias & Wiedmann, 1977
Upper Albian South India Casey, 1960; Wright et alii, 1996
Diego Suarez, Madagascar Casey, 1960

Parengonoceras Spath, 1924 Albian Tethyan  
  as Parengonoceras sp. juv. Upper Albian Suriname Owen & Mutterlose, 2006
  as Parengonoceras sp. Lower Albian SW Iran Bulot, 2010
  as Parengonoceras sp. Lower Albian Kent, England Casey, 1957, p. 42
1 algerianum (Dubourdieu, 1953) lowermost Albian Mellégue, Algeria Robert & Bulot, 2004
2 azlense (G. Scott, 1940b) Upper Albian Fort Worth, Texas G. Scott, 1940b
3 barbacoense Renz, 1970 Upper Albian Barbacoas, Venezuela Renz, 1970
4 bussoni Collignon, 1965 Upper Albian Tebaga de Kebili, South Tunisia Collignon, 1965
5 caneroti Canérot & Collignon, 1981 uppermost Albian Castellon, Spain Canérot & Collignon, 1981
Lower Albian Maestrat Basin, Spain Moreno-Bedmar et alii, 2008a
6 champaraense Benavides-Cáceres, 1956 Middle Albian Sihuas, northern Peru Benavides-Cáceres, 1956
Lower Albian La Cuenca, Peru Robert et alii, 2003
7 discoides Renz, 1970 Upper Albian Barbacoas, Venezuela Renz, 1970
8 duartei (Etayo-Serna, 1979) Lower Albian Corral Quemado, Peru Robert et alii, 2003; Robert & Bulot, 2004
9 duboisi (Latil, 1989) Upper Albian Salazac, Gard, France Latil, 1989; Amédro, 2008
Bakony Mts., Hungary Bujtor, 1990a, 1990b
10 duplicatum Renz, 1970 Upper Albian Barbacoas, Venezuela Renz, 1970
Basque-Cantabrian Basin, N Spain Renz, 1970; Lopez-Horgue et alii, 2009
11 ebrayi (Loriol, 1882) Albian Cosne, France Douvillé, 1928, Roman, 1938
Upper Albian Santander, Cantabria, Spain Wilmsen, 1996
Middle Albian France Wright et alii, 1996
Perchois, Aube, France Destombes, 1979; Latil, 2008
Lower Albian Peru Robert et alii, 2003; Robert & Bulot, 2004
Maestrat Basin, Spain Moreno-Bedmar et alii, 2008a
12 elegans Renz, 1970 Upper Albian Barbacoas, Venezuela Renz, 1970
13 guadaloupaeforme (Sommermeier, 1910) Middle Albian northern Peru Sommermeier, 1910; Robert et alii, 1998
Cajamarca, Condebamba, northern Peru Benavides-Cáceres, 1956; Robert et alii, 1998
Lower Albian La Cuenca, Peru Robert et alii, 2003
14 haasi Benavides-Cáceres, 1956 Lower Albian Celendín, northern Peru Benavides-Cáceres, 1956
upper Lower Albian Peru Robert et alii, 2003; Robert & Bulot, 2004
15 icaunensis (Cotteau, 1853) Albian Ravennes, Yonne, France Cotteau, 1853; Casey, 1978; Latil, 2008
16 mahmoudi (Dubourdieu, 1953) lowermost Albian Mellégue, Algeria Dubourdieu, 1953; Robert & Bulot, 2004
England Casey, 1978
17 nodosum (G. Scott, 1940b) Upper Albian Glen Rose, Texas G. Scott, 1940b
18 pernodosum (Sommermeier, 1910) Lower Albian Cajabamba, northern Peru Sommermeier, 1910; Robert et alii, 2003; Robert & Bulot, 2004
Middle Albian northern Peru Benavides-Cáceres, 1956; Robert et alii, 1998
La Cuenca, Peru Robert et alii, 2003
19 roemeri (Cragin, 1893) Cenomanian Texas Pritchett, 1905
Upper Albian Glen Rose, Texas G. Scott, 1940b
Albian Texas Hyatt, 1903; Kennedy et alii, 1998a
20 tetranodosum (Lissón, 1925) Middle Albian Celendín, Cajamarca, northern Peru Benavides-Cáceres, 1956
uppermost Lower Albian Cajamarca, northern Peru Robert et alii, 1998
21 trinitense (G. Scott, 1940b) Upper Albian Fort Worth, Texas G. Scott, 1940b
22 zagrosiense Collignon, 1981 ? Lower Cenomanian Kazhdumi, southern Iran Collignon, 1981
23 ziczag (Breistroffer, 1952) Middle Albian Uchupata, northern Peru Benavides-Cáceres, 1956; Robert et alii, 1998; Robert & Bulot, 2004

Platiknemiceras Bataller, 1954 uppermost Aptian-Lower Cenomanian Tethyan  
1 bassei Bataller, 1954 Lower-Middle Albian Spain Casey, 1961
Lower Albian   Wright et alii, 1996
Maestrat Basin, Cataluna, Spain Martínez et alii, 1994; Moreno-Bedmar et alii, 2008a
uppermost Aptian SW Iran Bulot, 2010
2 caseyi Matsumoto et alii, 1980 Lower Albian Kyushu, Japan Matsumoto et alii, 1980
3 colombiana Etayo-Serna, 1979 upper L. Albian-lower M. Albian Colombia Etayo-Serna, 1979, 1981; Owen, 1999
4 deserti (Mahmoud, 1955) Upper Albian Utrillas Formation, SE Spain Gimenez et alii, 1993
Lower Albian Moghara, Egypt Mahmoud, 1955; Moret & Mahmoud, 1955; Casey, 1961
Lurestan, Iran Bulot, 2007
5 flexuosum Kennedy et alii, 1998a Lower-Middle Albian Texas, USA Kennedy et alii, 1998a
upper Lower Albian Peru Robert & Bulot, 2004
6 gracile (Douvillé, 1916) Albian Mderedj, Lebanon Basse, 1940; Casey, 1961
Upper Albian Utrillas Formation, Spain Gimenez et alii, 1993
Oued Zitoun, North Tunisia Kogbe & Méhes, 1986
Gafsa, Central Tunisia Marzouk & Ben Youssef, 2008
Middle Albian Tebaga, central Tunisia Collignon, 1965; Ben Youssef et alii, 1985
Dead Sea, Israel Weissbrod, 2002
Lower Albian Moghara, northern Sinai, Egypt Douvillé, 1928; Moret & Mahmoud, 1955; Mouty & Gauthier, 1999; Tawadros, 2001; Abu-Zied, 2008
7 hachourii (Dubourdieu, 1953) lowermost Albian Mellégue, Algeria Dubourdieu, 1953; Robert & Bulot, 2004
basal Albian Guajira, NE Colombia Guerrero, 2002
8 jullieni (Basse, 1940) Upper Albian El Mizab, Meknes, Atlas, Morocco Collignon & Faure-Murat, 1968
Albian Khenchela, Algeria Casey, 1961
9 sequanense Destombes, 1979 Lower-Middle Albian Aube, France Destombes, 1979
10 subcomplicatum (Basse, 1940) Albian Lebanon Basse, 1940; Casey, 1961
11 valencianum Mas & Wiedmann, 1980 uppermost Albian-lowermost Cenomanian Valencia, Spain Mas & Wiedmann, 1980; Garcia et alii, 2004

Table 1: Geographical and stratigraphical distribution of engonoceratid species. Type species are indicated in bold.