Brachiopodes récoltés lors de campagnes (1976-2014) dans l’étage Bathyal des côtes françaises méditerranéennes

Redéfinition des limites du système phytal dans le domaine marin benthique

“Dépôt légal à parution”
Manuscript online on 10-12-2018
Carnets de Géologie CG2018_B01
[Book 1 - Livre 1]
Brachiopodes récoltés lors de campagnes (1976-2014) dans l’étage Bathyal des côtes françaises méditerranéennes.

Redefinition de la limite du système phytal dans le domaine marin benthique.

Christian C. Emig

BrachNet
20, rue Chaix, F-13007 Marseille
brachnet@aliceadsl.fr

Citation

Mise en ligne le 10 décembre 2018
Sommaire

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract / Résumé</td>
<td>3</td>
</tr>
<tr>
<td>Avant-Propos</td>
<td>4</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>5</td>
</tr>
<tr>
<td>2. Matériel et techniques utilisés</td>
<td>7</td>
</tr>
<tr>
<td>A. Campagnes et navires</td>
<td>7</td>
</tr>
<tr>
<td>B. Engins mis en œuvre</td>
<td>8</td>
</tr>
<tr>
<td>3. Histoire des échanges dans le domaine profond méditerranéen</td>
<td>13</td>
</tr>
<tr>
<td>4. Définition de l'étage Bathyal supérieur</td>
<td>16</td>
</tr>
<tr>
<td>A. Caractéristiques morpho-géologiques</td>
<td>16</td>
</tr>
<tr>
<td>B. Caractéristiques physiques</td>
<td>17</td>
</tr>
<tr>
<td>C. Caractéristiques biologiques</td>
<td>18</td>
</tr>
<tr>
<td>5. Les espèces de brachiopodes du Bathyal méditerranéen français</td>
<td>21</td>
</tr>
<tr>
<td>Novocrania</td>
<td>23</td>
</tr>
<tr>
<td>Gryphus</td>
<td>25</td>
</tr>
<tr>
<td>Terebratulina</td>
<td>28</td>
</tr>
<tr>
<td>Megathiris</td>
<td>30</td>
</tr>
<tr>
<td>Platidia</td>
<td>31</td>
</tr>
<tr>
<td>Megerlia</td>
<td>32</td>
</tr>
<tr>
<td>6. Distribution d'Ostreobium dans les coquilles de Gryphus</td>
<td>36</td>
</tr>
<tr>
<td>7. La limite du système phytal : Gryphus comme marqueur</td>
<td>38</td>
</tr>
<tr>
<td>8. Cahiers des stations</td>
<td>39</td>
</tr>
<tr>
<td>9. Cartes</td>
<td>60</td>
</tr>
<tr>
<td>A. Cartes des campagnes en Languedoc et Provence</td>
<td>60</td>
</tr>
<tr>
<td>B. Cartes des campagnes en Corse</td>
<td>67</td>
</tr>
<tr>
<td>C. Cartes de distribution en Atlantique et Manche</td>
<td>78</td>
</tr>
<tr>
<td>Remerciements</td>
<td>80</td>
</tr>
<tr>
<td>10. Références bibliographiques</td>
<td>81</td>
</tr>
<tr>
<td>Appendice A : Pour un renouvellement de la taxinomie des brachiopodes actuels</td>
<td>90</td>
</tr>
<tr>
<td>Appendice B : Historique de la systématique de Terebratula minor Philippi, 1836</td>
<td>92</td>
</tr>
<tr>
<td>Appendice C : Historique de la systématique de Terebratula seminulum Philippi, 1836</td>
<td>97</td>
</tr>
</tbody>
</table>

| Planche 1 | 12 |
| Planche 2 | 34 |
Résumé.

Au cours de la période allant de 1976 à 2014, la distribution des brachiopodes le long des côtes françaises méditerranéennes a été particulièrement bien suivie, notamment dans l’étage bathyal. De 1983 à 1989, l’étude de ce groupe zoologique s’est inscrite dans le cadre de la RCP-CNRS n° 728 dont les données des campagnes en mer font l’objet du présent livre : elles portent sur les six espèces présentes dans le Bathyal supérieur, Novocrania anomala, Gryphus vitreus, Terebratulina retusa, Megathiris detruncata, Platidia anomioides et Megerlia truncata. Les résultats sont développés au cours de neuf chapitres, dont les deux derniers constituent les cahiers de tous les prélèvements réalisés dans l’ensemble des stations prospectées et leurs cartes de répartition géographique, ainsi que celles des six espèces mentionnées. La présence de ces dernières dans les biocœnoses méditerranéennes a mis en évidence un hiatus avec la systématique à cause d’un usage restreint des seuls caractères de la coquille avec absence de méthodes phylogénétiques, pourtant en grand développement. Une autre mise en évidence porte questionnement sur la validité de certains espèces du registres fossiles, Terebratula minor (= Gryphus vitreus), mais aussi actuelles comme Terebratula seminulum, sont pris comme exemples. Enfin, l’infestation de coquille de G. vitreus par l’algue Ostreobium a conduit à discuter de la limite inférieure du système phytal benthique et ses variations bathymétriques jusque dans le Bathyal.

Mots-clés : brachiopode ; bathyal ; méditerranée ; biocœnose ; aphytal ; photique.

Abstract.

Brachiopods sampled during expeditions (1976-2014) in the Bathyal Zone of the French Mediterranean coasts. Redefinition of the boundaries of the phytal system in the marine benthic domain.

The distribution of brachiopods along the French Mediterranean coast, especially in the Bathyal zone, was studied in detail from 1976 to 2014 being one of the main objectives of the RCP-CNRS No 728, that took place during the years 1983 to 1989. The data obtained during these campaigns constitute the main objective of this e-book, which focuses on five brachiopod species Novocrania anomala, Gryphus vitreus, Terebratulina retusa, Megathiris detruncata, Platidia anomioides and Megerlia truncata that occur in the Upper Bathyal zone. The e-book consists of nine chapters, of which the last two contain the data concerning all the stations studied, the distributional charts of the five species mentioned, included. The presence of these species in the Mediterranean biocoenoses has put in evidence a hiatus in the systematics based mainly in characters of the shell and rarely in phylogenetic analyses. Another important point that is addressed is the discussion of the validity of some species with fossil record, being Terebratula minor (= Gryphus vitreus), as well as of extant ones, i.e., Terebratula seminulum, chosen as examples. Finally, the infestation of G. vitreus shells by the Ostreobium alga led to reconsider the lower limit of the benthic phytal system and its bathymetric variations as far as in the Bathyal.

Keywords: brachiopod; bathyal; Mediterranean; biocoenosis; aphytal; photic.
Avant-Propos

Le but premier de cet ouvrage est de rendre accessible l’ensemble des cahiers de stations de mes campagnes dans l’étage Bathyal au large des côtes de Provence et de Corse (France), en y ajoutant les données de quelques campagnes faites par l’Ifremer (Institut Français de Recherche pour l’Exploitation de la Mer). En effet, le matériel récolté, et en premier chef les brachiopodes, ont été déposés dans divers Muséums, dont les principaux dépôts concernent le Muséum National d’Histoire Naturelle de Paris, le « Museo Nacional de Ciencias Naturales » (CSIC, à Madrid) et le « Instytut Paleobiologii PAN, Varsovie » (Institut de Paléobiologie, Académie des Sciences de Pologne, à Varsovie).

Toutes les stations ont été reportées sur des cartes marines françaises, ainsi que la distribution géographique pour chaque espèce dans les différentes zones prospectées.

Cet ouvrage est aussi l’occasion de résumer brièvement nos connaissances sur l’histoire de la mer Méditerranée, ainsi que les principaux résultats sur l’écologie des espèces de brachiopodes récoltées dans l’étage Bathyal, en rappelant que l’écologie ne peut être étudiée des diagnoes de ces espèces, comme en général pour toutes les espèces actuelles, ainsi que fossiles de condition de pouvoir définir le milieu naturel et non les conditions ayant, en fait, entraînées leur fossilisation. Un cas actuel est évoqué suite à un envasement du plateau continental et du Bathyal supérieur en Corse.

Enfin, des données inédites concernant la distribution des coquilles de Gryphus infestée par l’algue verte unicellulaire Ostreobium a conduit à préciser la limite entre les systèmes phytal (ou photique) et aphytal (ou aphotique) dans le domaine benthique.

En appendice, il m’est apparu intéressant, voire utile, d’ouvrir le débat sur l’application des méthodes phylogénétiques dans la taxinomie des espèces et genres de brachiopodes actuels. Deux Terebratula, T. minor et T. seminulum, toutes deux décrites par Philippi (1836), sont prises comme exemples.

Autres ebooks récents par Christian C. Emig sur les Brachiopodes :

1. Introduction

Dans l’Océan mondial, la distribution bathymétrique des brachiopodes est la plus abondante depuis les zones littorales jusque dans l’étage Bathyal supérieur (Emig, 1988, 2016) : pour ces lophophorates suspensivores, elle s’explique par la nécessité de vivre dans des biotopes soumis à un hydrodynamisme, favorisant l’apport nutritionnel en particules alimentaires et en plancton. Le rebord du plateau continental est particulièrement favorable de par les caractéristiques particulières des masses d’eau y circulant, avec une prédominance de brachiopodes, principalement craniformes et rhynchonelliformes, dans tout l’étage du Bathyal supérieur (Emig, 1997a, 2016).

La répartition actuelle des brachiopodes s’étend dans tous les océans et mers : la distribution latitudinale montre que les linguliformes, principalement littoraux, sont plus abondants dans la zone intertropicale, tandis que les rhynchonelliformes ont une plus large distribution dans les zones tempérées (Emig, 2016).

Notre connaissance de la répartition géographique des brachiopodes le long et au large des côtes françaises est presque exclusivement liée aux résultats de campagnes océanographiques (Álvarez et al., 2016, 2017). En effet, sur le plateau continental, les brachiopodes sont généralement cryptiques, donc peu accessibles depuis la surface, sauf en plongée en scaphandres autonomes, d’autant que leur densité est faible et leur taille petite, souvent moins d’un centimètre. En revanche, dans le domaine profond, au-delà du rebord du plateau continental (vers environ 100 m), la diversité des brachiopodes est maximale avec de fortes densités (plusieurs centaines d’individus par m²) dans l’étage Bathyal supérieur (Emig, 1985a, 1988, 1989a, 1997a) (Fig. 1-1, 1-2). Les distributions géographique et bathymétriques des brachiopodes, comme pour toutes les espèces, sont en relation directe avec la biodiversité et donc avec la biocoenose à laquelle est inféodée une espèce de brachiopode. Ces biocoénoses actuelles et fossiles (thanatoécénoses) ont particulièrement bien été étudiées en mer Méditerranée : aussi la taxinomie des brachiopodes ne peut se faire sans les prendre en compte jusque, comme caractère, dans une analyse cladistique. Cette méconnaissance a récemment conduit à des descriptions sujettes à caution (voir Emig, 2014 ; et Appendices A-C).

En mer Méditerranée, la proximité de la pente continentale, souvent à quelques milles de la côte, a facilité la multiplicité des prélèvements en réduisant fortement le temps de parcours. Les données obtenues dans les stations prospectées au cours des campagnes en mer effectuées entre 1976 et 2014 ont été rassemblées dans les chapitres 8 et 9, avec les cartes de répartition des différentes espèces de...
brachiopodes. Quelques résultats inédits sont aussi analysés et utilisés pour discuter les limites du système phytal benthique en mer Méditerranée.

Ce document est principalement technique afin de publier l’ensemble des données récoltées au cours des campagnes en mer et permettre si nécessaire leur utilisation ultérieure ou affiner celles publiées antérieurement par les divers membres de la RCP-CNRS 728 et ceux qui ont bénéficié du matériel récolté. Ce dernier a été déposé dans les collections du Museo Nacional de Ciencias Naturales (CSIC, Madrid), du Muséum National d’Histoire naturelle de Paris et de l’Institut de Paléobiologie (PAN Varsovie).
2. Matériel et techniques utilisés

A. Campagnes et navires.

Les travaux dans le cadre de la Recherche Coopérative sur Programme (Centre National de la Recherche Scientifique) RCP-CNRS n° 728 (Etudes des populations actuelles de brachiopodes; transposition aux formes fossiles, 1983-1989; Directeur C. C. Emig), réunissant des spécialistes français, britanniques, espagnols, italiens, ont été basés sur les résultats obtenus durant les campagnes effectuées au large des côtes provençales et autour de la Corse (Tableau 1, Pl. 1). Dans ce même cadre, deux autres campagnes ont eu lieu : l’une en Ecosse (depuis Oban) avec Gordon Curry (Université de Glasgow) et une en Sicile (au large de Syracuse), organisée par Italo Di Geronimo (Université de Catane) (Di Geronimo, 1987) ; elles ne sont pas traitées ici. Le matériel récolté a donné lieu à nombreuses publications sur des sujets et thématiques divers tant en biologie, écologie et paléontologie.

Tableau 1. Liste des campagnes en mer, dont les résultats sont mentionnés dans le chapitre 8 et les cartes dans le chapitre 9. Abréviations françaises des navires : N/O = navire océanographique ; BISM = bâtiment d’intervention sous la mer ; SMI = sous-marin d’intervention (Pl. 1).

<table>
<thead>
<tr>
<th>Campagnes</th>
<th>Dates et Navires</th>
<th>Provence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branov 0</td>
<td>mars 1983 - N/O Antedon</td>
<td>CNRS</td>
</tr>
<tr>
<td>Branov 1</td>
<td>29 février - 2 mars 1985 - N/O Antedon</td>
<td>Marine Nationale</td>
</tr>
<tr>
<td>Branov 2</td>
<td>27 janvier 1986 - BISM Triton & SMI Griffon</td>
<td>CNRS Chapitre 8 : Tableau 3 et Tableau 4</td>
</tr>
<tr>
<td>Branov 3</td>
<td>11 - 14 décembre 1986 - N/O Antedon</td>
<td>Chapitre 8 : Tableau 5</td>
</tr>
<tr>
<td>Branov 4</td>
<td>12 - 16 janvier 1987 - N/O Catherine-Laurence & ROV Modexa</td>
<td>Chapitre 8 : Tableau 5</td>
</tr>
<tr>
<td>Branov 5</td>
<td>4 - 6 mars 1987 - N/O Antedon</td>
<td>Chapitre 8 : Tableau 5</td>
</tr>
<tr>
<td>Branov 6</td>
<td>30 mars - 3 avril 1987 - N/O Catherine-Laurence</td>
<td>Chapitre 8 : Tableau 5</td>
</tr>
<tr>
<td>Branov 7</td>
<td>1 - 5 juin 1987 - N/O Antedon</td>
<td>Chapitre 8 : Tableau 6 et Tableau 7</td>
</tr>
<tr>
<td>Branov 8</td>
<td>22 octobre 1987 - BISM Triton & SMI Griffon</td>
<td>Chapitre 8 : Tableau 8 et Tableau 9</td>
</tr>
<tr>
<td>Branov 9</td>
<td>10 - 25 novembre 1987 - N/O Corottheff</td>
<td>Chapitre 8 : Tableau 10</td>
</tr>
<tr>
<td>Branov 10</td>
<td>13 octobre 1989 - BISM Triton & SMI Griffon</td>
<td>Chapitre 8 : Tableau 10</td>
</tr>
<tr>
<td>SocBea</td>
<td>septembre 1996 - N/O Catherine-Laurence</td>
<td>Chapitre 8 : Tableau 5</td>
</tr>
<tr>
<td>SocBea</td>
<td>mars 1999 - N/O Catherine-Laurence</td>
<td>Chapitre 8 : Tableau 5</td>
</tr>
<tr>
<td>DEPROG</td>
<td>avril 1996 - N/O Europe</td>
<td>IFREMER Chapitre 8 : Tableau 5</td>
</tr>
<tr>
<td>Campagnes</td>
<td>Dates et Navires</td>
<td>Corse</td>
</tr>
<tr>
<td>BranCors 1</td>
<td>31 mai - 9 juin 1983 - N/O Catherine-Laurence</td>
<td>Chapitre 8 : Tableau 6 et Tableau 7</td>
</tr>
<tr>
<td>BranCors 2</td>
<td>9 - 15 avril 1984 - N/O Catherine-Laurence</td>
<td>Chapitre 8 : Tableau 8 et Tableau 9</td>
</tr>
<tr>
<td>BranCors 3</td>
<td>2 - 6 juillet 1984 - N/O Catherine-Laurence</td>
<td>Chapitre 8 : Tableau 10</td>
</tr>
<tr>
<td>BranCors 4</td>
<td>4 - 8 juillet 1985 - N/O Corottheff</td>
<td>Chapitre 8 : Tableau 10</td>
</tr>
<tr>
<td>BranCors 5</td>
<td>4 - 22 novembre 1985 - N/O Catherine-Laurence</td>
<td>Chapitre 8 : Tableau 10</td>
</tr>
<tr>
<td>BranCors 6</td>
<td>19 - 23 janvier 1987 - N/O Catherine-Laurence</td>
<td>Chapitre 8 : Tableau 10</td>
</tr>
<tr>
<td>BathyMed</td>
<td>7 - 22 novembre 1988 - N/O Catherine-Laurence</td>
<td>Chapitre 8 : Tableau 10</td>
</tr>
<tr>
<td>Meditès 2</td>
<td>mai-juin 2012 - N/O Europe</td>
<td>IFREMER Chapitre 8 : Tableau 10</td>
</tr>
<tr>
<td>Meditès 3</td>
<td>mai-juin 2013 - N/O Europe</td>
<td>Chapitre 8 : Tableau 10</td>
</tr>
<tr>
<td>Meditès 4</td>
<td>mai-juin 2014 - N/O Europe</td>
<td>Chapitre 8 : Tableau 10</td>
</tr>
</tbody>
</table>

Les cahiers des stations sont disponibles dans le chapitre 8 et les cartes de répartition géographique et de distribution bathymétrique figurent dans le chapitre 9. D’autres comptages de Gryphus vitreus ont eu lieu lors de récentes campagnes CNRS et Ifremer (Tableau 1) : ils ont été ajoutés à nos données.

- Les unités de mesure utilisées sont pour la distance, le mille marin [= 1852 m], et pour la vitesse, le nœud [= 1852/3600 m/s ou 1 mille marin/h]. Ces unités, bien qu’en dehors du Système International d’Unités, sont en usage et inclus dans ce dernier. Elles sont utilisées parce qu’un mille
marin à la surface de la Terre est correspond par une minute de latitude, ce qui est cohérent avec la latitude et la longitude qui sont mesurées en degrés et minutes et seconde – ou 1/10e de s.

- Les coordonnées géographiques des stations (latitude, longitude) ont été obtenues en utilisant d’abord le système de positionnement Loran-C, remplacé ensuite par celui par satellite de type Global Navigation Satellite Système (dont le GPS) avec une précision au mètre près.

La mise à disposition des cartes bathymétriques précises (à mesures bathymétriques rapprochées) par la Mission Océanographique de Méditerranée (Marine Nationale Française, Toulon) a permis de dresser les profils des radiales et a été d’une grande aide dans la préparation des trois plongées en submersible.

B. Engins mis en œuvre

Divers engins ont été utilisés selon les nécessités des recherches et des résultats à obtenir (voir aussi Emig, 1983 ; Anastasios, 2013).

Drague Charcot-Picard

Elle est l’engin principal et indispensable pour récolter des brachiopodes sur la pente continentale.

Fig. 2-1. Drague Charcot-Picard, avec caleçon.

C’est l’engin parfaitement adapté avec la meilleure efficacité. Il existe deux montages selon les besoins :

- une toile de jute, nommé caleçon, doublé d’un filet épais de protection (Fig. 2-1).
- sans caleçon avec un filet de 10 mm de maille, protégé par un filet épais (fil de 10 mm) à grosse maille (Fig. 2-2).

Bien que d’un usage facile, elle exige néanmoins d’une bonne expérience pour un maximum d’efficacité selon les résultats souhaités dans la récolte de brachiopodes, notamment dans des conditions de fonds accidentés comme le sont fréquemment ceux du Bathyal supérieur méditerranéen, surtout sur des pentes relativement fortes et dans les canyons sous-marins. Aussi, les croches1 sont fréquentes, alors pour limiter les dégâts ou permettre de remonter la drague en cas de croche sérieuse, l’engin est équipé d’une bosse cassante (Fig. 2-1) ; elles obligent parfois au ramendage ou même à la réparation de la structure métallique de la drague.

1 *Terme de pêcheur.* Obstacle naturel immergé dans lequel se prend le filet ou l’engin (chalut, drague).
Fig. 2-2. Retour sur le pont d’une drague Charcot-Picard sans caleçon (Photos extraites d’une vidéo).

Petit chalut à perche (2 m de large)

Ce chalut n’a été utilisé qu’occasionnellement, car fragile (Fig. 2-3), il nécessite de fond meuble homogène sans grandes aspérités, ce qui est rare dans le bathyal supérieur des côtes provençal et corse. Il ressemble au gangui provençal à armature fixe, qui était utilisé à faible profondeur par les pêcheurs (un usage aujourd’hui pratiquement interdit pour les dégâts occasionnés dans les herbiers – soumis à dérogation).

Fig. 2-3. Petit chalut à perche – à gauche : sa mise à l’eau ; à droite : le nœud de raban-de-sac.
Benne Shipeck
Cette benne a été choisie pour faire les prélèvements de sédiments meubles pour l'étude de leur granulométrie, ainsi que de la méiofaune. En anglais, elle est nommée Shipeck sediment sampler (Fig. 2-4). Le godet d'une dimension d'environ 20,5 x 20 cm pivote de 180° en touchant le fond et réalise ainsi le prélèvement. Sa mise à l'eau demande de l'attention pour ne pas déclencher prématurément la rotation.

Fig. 2-4. Benne Shipeck et sa mise en œuvre.

Modexa (véhicule sous-marin télé Guidé)
Ce ROV (Remotely Operated Vehicle ; Pl. 1) était un prototype apparu à l'époque des créations et mises au point de ce nouveau type de véhicule sous-marin, dont le but était de remplacer les submersibles sous-marins. Car ces derniers nécessitent des moyens lourds, tant techniques que financiers, dans leur mise en œuvre et donc ne sont pas facilement disponibles. Néanmoins, si un ROV est aujourd'hui d'une utilisation aisée et peu onéreuse, rien ne remplace une plongée humaine pour des observations in situ. Cette remarque a été déjà faite début des années 1960 avec les premières observations et prélèvements scientifiques en plongée en scaphandre autonome (Emig, 1966).

Luge épi Benthique.

Fig. 2-5. Luge épi Benthique en cours de recueillement du prélèvement (à gauche) et prête pour la prochaine mise à l'eau.
La luge utilisée (Fig. 2-5), dérivée de celle d’Ockelmann, a été mise au point par Ledoyer (1987) pour la faune vagile épibenthique, notamment les crustacés (cumacés, amphipodes...).

Submersible sous-marin

Les plongées avec le submersible SMS Griffon, à partir du navire support BSM Triton (Pl. 1), étaient inscrites dans le cadre des aides à la recherche scientifique par la Marine Nationale française, à partir du port d’attache de Toulon. Les observations, faites lors des trois plongées effectuées en Provence (Tableau 1), se sont révélées primordiales dans l’étude de l’écologie et de la distribution des brachiopodes du Bathyal. En outre, chaque radiale (voir chapitres 8 et 9) avait été précédée par une intensive campagne de prélèvements, puis suivie par une autre pour échantillonner les zones observées lors des plongées.

Nota

Les engins utilisés ne permettent que des prélèvements qualitatifs sans donner la densité par m². C’est dans les stations prospectées en submersible, où des mesures de densité de *Gryphus vitreus* ont été effectuées visuellement, que les traicts avec la drague Charcot-Picard ont été établis pour obtenir une extrapolation en fonction du nombre d’individus récoltés : chaque dragage se faisant à la même vitesse constante du navire pour une même durée de travail au fond (le toucher du câble renseigne parfaitement de l’arrivée sur le fond). En outre, lors de tous les dragages, le travail de l’engin au fond est très fréquemment contrôlé avec une main sur le câble de traction.
Planche 1. Principaux navires océanographiques utilisés au cours des campagnes en Provence et en Corse.
3. Histoire des échanges dans le domaine profond méditerranéen

Le rebord du plateau continental constitue une limite, séparant le domaine néritique du domaine profond, aussi importante que la ligne côtière. Ce rebord est défini par des caractéristiques à la fois géologiques, physico-chimiques et biologiques (Emig, 1997a). Le domaine profond est divisé en trois étages, dont l’extension et l’importance en mer Méditerranée diffèrent de ceux dans l’océan mondial (Fig. 3-1).

Fig. 3-1. Comparaison de l’extension, en pourcentage, des étages dans l’océan mondial et en mer Méditerranée qui ne représente que 0,82 % de la superficie totale de l’océan mondial et 0,35 % de son volume. Le rebord du plateau continental (dont la profondeur est variable selon l’océan ou la mer pris en considération) marque la frontière entre les domaines néritique (plateau continental) et profond : il se situe vers cent, cent dix mètres en mer Méditerranée. À noter que la profondeur de deux cents mètres est une limite exclusivement économique et non scientifique, et ce n’est que dans ce contexte qu’elle devrait être mentionnée.

Le domaine profond méditerranéen reste mal connu, probablement parce que le benthos profond est caractérisé par une absence d’originalité et une pauvreté, dont les raisons sont à rechercher dans l’histoire récente de la faune (Di Geronimo, 1990 ; Laubier & Emig, 1993 ; Taviani, 2002 ; Emig & Geistdoerfer, 2004, 2008). Trois principaux types d’échanges en sont à l’origine :

- les échanges historiques à travers les changements de faunes depuis le Pliocène et durant les fluctuations climatiques avec des successions de périodes glaciaires et interglaciaires (Fig. 3-2, 3-3) ;
- les échanges bathymétriques au sein des étages bathyal et abyssal soumis à des conditions très particulières (homothermie, relative oligotrophie, barrière du seuil de Gibraltar, circulation des masses d’eaux) ; plus profonde est l’extension des espèces en mer Méditerranée et plus large est leur distribution hors Méditerranée (Fig. 3-4) ;
- les échanges géographiques avec des affinités étroites entre les bassins occidentaux et orientaux de la mer Méditerranée et entre cette dernière et le proche océan Atlantique. Le cas des espèces endémiques reste un problème biogéographique. En général, les espèces ont toujours une distribution plus profonde en allant vers l’est et leur taille devient plus petite.

Ces échanges sont tous directement soumis aux caractéristiques du domaine profond méditerranéen, principalement à l’homothermie (de l’ordre de 13°-13,5°C dans le bassin occidental et 14°-15°C dans le bassin oriental), à une forte salinité (environ 38 à 38,5 psu2), à la stratification des couches d’eaux et à leur circulation barotropique, aux courants dans les détroits (Gibraltar et Sicule-tunisien) (Fig. 3-3).

2 Selon les conventions internationales (UNESCO, 1985), les valeurs de salinité n’ont pas d’unité propre, les données sont exprimées en psu (= practical salinity unit).
Fig. 3-2. Principales phases de succession des faunes en mer Méditerranée depuis le Pliocène durant les diverses périodes glaciaires et interglaciaires (marquées par les variations du niveau de la mer) (modifié, d’après Laubier & Emig, 1993). Le nombre réel de glaciations au cours du Pléistocène reste à compléter, car il est possible qu’il y ait une ou deux autres glaciations entre celles de Mindel et de Riss.

Fig. 3-3. Résumé des principales caractéristiques d’une glaciation quaternaire durant les périodes glaciaire et interglaciaire, en mer Méditerranée.

Fig. 3-4. Évolution paléo-oceanographique des eaux du Bassin occidental de la Méditerranée depuis la dernière glaciation de Würm (d’après Poutiers, 1987).
Fig. 3-5. Répartition bathymétrique des diverses catégories d’espèces (modifiée, d’après Carpine, 1970 ; Reyss, 1970) avec les limites de l’étage Bathyal (et de ses sous-étages (en trait pointillé les sous-limites dans le Bathyal moyen) et leurs variations.

La Méditerranée profonde actuelle apparaît comme une mer beaucoup plus jeune qu’aucune autre partie de l’Océan Mondial profond. Sa faune est principalement composée de groupes anciens (primitifs ?) au sein des embranchements, tandis qu’une fraction plus réduite comprend les types les plus spécialisés de leur groupe. C’est au niveau du rebord du plateau continental, agissant comme une frontière vers cent à cent dix mètres de profondeur, que se produit un important changement faunistique (Fig. 3-5, et 4-1, 4-2).

Dans la distribution verticale du benthos profund méditerranéen, l’homothermie profonde est le facteur le plus important : il n’y a pas de variations de température pour limiter, en profondeur, la faune à divers niveaux comme dans l’océan Atlantique. Beaucoup d’espèces ne sont eurybathes en mer Méditerranée que parce qu’elles sont eurythermes ou sténothermes chaudes. Aussi, les limites de distribution sont régies par d’autres facteurs, tels que salinité, granulométrie, pression, nourriture disponible, hydrodynamisme. Et, cette variété de conditions locales conduit à un étage bathyal plus hétérogène que celui de l’océan Atlantique (Laubier & Emig, 1993 ; Emig, 1997a ; Emig & Geistdoerfer, 2004, 2008) (Fig. 3-5) ; ceci est lié à une distribution principalement en ceinture selon des isobathes.

Cette mer est un important centre d’évolution avec de futures spéciations et la création de nouvelles espèces endémiques à cause de ses particularités physiques à forts gradients.
4. Définition de l’étage Bathyal supérieur

La limite supérieure de l’étage Bathyal se situe au niveau du rebord du plateau continental : elle est définie non seulement par des caractéristiques morpho-géologiques, mais aussi physiques et biologiques des masses d’eau, du benthos et du pelagos (Fig. 4-1, 4-2). Malgré son importance primordiale, ce rebord étant une véritable frontière en raison des forts gradients qui s’y produisent, son environnement reste peu connu, car il se situe entre deux zones d’intérêt distinctes, l’environnement côtier et le domaine profond (Fig. 4-2) : il est comparable à la limite domaine marin – domaine terrestre. Il n’est donc pas surprenant que la transition du plateau au talus soit restée un « no man's land » biologique et physique (Vanney & Stanley, 1983 ; Vanney & Gennesseaux, 1988 ; Emig, 1997a).

Fig. 4-1. Bloc-diagramme des deux grands types de profil (I et II) de la zone supérieure de l’étage Bathyal, avec la distribution des biocénoses, en fonction de la pente et de la profondeur (d’après Emig, 1997a). Les flèches indiquent le sens des courants de fond dans les zones (entre pointillés) à densité maximale des brachiopodes où les courants sont les plus intenses – voir aussi Fig. 4-3. Biocénoses bathyales (voir aussi Fig. 4-2) : SDB = b. des Sables Détritiques Bathyaux ; DL = b. du Détritique du Large ; VBS = b. de la Vase Bathyale Supérieure ; VP = b. de la Vase Profonde. Biocénoses circalittorales : DC = b. du Détritique Côtier ; DE = b. du Détritique Envasé.

A. Caractéristiques morpho-géologiques

La morphologie de la zone du Bathyal supérieur, généralement des substrats meubles présente deux types principaux de profils (Fig. 4-1) sur lesquels la rupture de pente se produit à 100 à 120 m. Cependant, sur le profil de type II, on considérait généralement que la rupture du plateau continental se situait vers 150 m de profondeur, ce qui, en fait, correspond au rebord d’une grande terrasse bathyale ; car la véritable limite continentale, souvent manquée, se situe vers le rivage et correspond au rebord d’un court déclivité d’environ 5 à 20 m (Fig. 4-1) (Emig, 1989a, 1989b, 1997a ; Savoye & Piper, 1993).

La limite inférieure de la zone bathyale supérieure est marquée par la « mud-line » suite à un changement brusque des conditions environnementales (Blake & Doyle, 1983) et sert de marqueur de niveau énergétique (Stanley et al., 1983 ; Emig, 1997a). Généralement située entre 160 et 300 m de profondeur selon le profil de la pente (Fig. 4-1, 4-2, 4-3), dont la morphologie régit l’influence des facteurs abiotiques dominants, on peut résumé par plus la pente est faible, moins la mud-line est
profonde (Emig, 1989a, 1989b). Ainsi, se confirme que les limites de l'étagement benthique ne peuvent être définies par la seule bathymétrie, mais selon un ensemble de facteurs.

L’empreinte récente, depuis la dernière élévation du niveau de la mer (glaciation de Würm ≈ 17 000 ans), apparaît clairement dans le Bathyal supérieur : le rebord de la plateforme continentale se situe à la limite extérieure des dépôts formant un prisme progradant (Fig. 4-1). Le bord du plateau est en équilibre avec les conditions environnementales actuelles ; sa progradation durant l’Holocène tardif a été négligeable et sa profondeur coincide avec un niveau « d’équilibre de déposition » (Mougenot et al., 1983 ; Monaco et al., 1990 ; Courp & Monaco, 1990 ; Savoye & Piper, 1993). L’absence relative de sédiments récents dans le Bathyal supérieur montre que les sédiments sont principalement des sédiments résiduels (Würmien) retravaillés avec des thanatocœnoses quaternaires visibles par submersibles et généralement situées entre 180 et 200 m de profondeur (Gautier & Picard, 1957 ; Blanc, 1968 ; Emig & Arnaud, 1988 ; Emig & García-Carrascosa, 1991 ; Emig, 1997a).

B. Caractéristiques physiques

La zone bathyale supérieure est un secteur à haute énergie caractérisé par des variations de gradient des facteurs abiotiques dominants, à savoir hydrodynamique, salinité, température, oxygène, sédiments (Fig. 4-2). Dans tout le bassin nord-ouest, il existe un courant principal, le courant liguro-provençal-catalan, qui suit la rupture du plateau continental et coïncide avec un front de densité de plateau/pente permanent ; ce flux est intensifié par les vents dominants et sépare les masses d’eaux continentales du plateau de celles profondes du talus continental (Salat & Font, 1987 ; Millot, 1987 ; Wang et al., 1988 ; Emig, 1989b ; Monaco et al., 1990 ; Font, 1990 ; Emig & García-Carrascosa, 1991 ; Huthnance, 1992).

Le courant proche du fond, faible ou absent sur la partie inférieure du plateau continental, augmente en plusieurs dizaines de mètres dès le rebord du plateau ; son extension bathymétrique, sa vitesse et sa direction sont directement liées à la physiographie de la pente (Fig. 4-1). La vitesse montre un gradient vertical et varie d’environ 0,5 à 2 nœuds ou plus, parfois responsable de grandes rides ou ondulations sur les fonds (Emig, 1987). Par conséquent, la sédimentation est absente ou faible dans le Bathyal supérieur, qui semble être une zone de remise en suspension avec une accumulation mineure de particules et dans laquelle la faune se caractérise par de fortes densités de suspensivores. À la limite inférieure de cette zone, la vitesse du courant de fond s’arrête sur plusieurs dizaines de mètres tandis que le substrat devient vaseux (Emig, 1997a) : c’est la mudline (Fig. 4-1 à 4-3).
La colonne d'eau surmontant le Bathyal supérieur dans le nord-ouest de la mer Méditerranée est caractérisée par plusieurs gradients (Fig. 4-2) : faible variation annuelle de la température (environ 2°C) qui devient constante (homothermie profonde) au-delà d'environ 200 m de profondeur, augmentation de la salinité et forte diminution de l'oxygène dont la teneur est cependant supérieure à la consommation biologique. Dès la limite inférieure de la structure frontale, les propriétés hydrologiques changent fortement (Huang & Su, 1991), notamment par la couche d'oxygène minimum liée à la masse d'eau intermédiaire levantine, un maximum de salinité et une homothermie (Fig. 4-2). Le rapport C/N dans les sédiments diminue de 12 à 10 (Carpine, 1970 ; Emig, 1997a).

C. Caractéristiques biologiques

L'étage Circalittoral s'étend jusqu'à la limite inférieure des algues multicellulaires (Pérès & Picard, 1964 ; Picard, 1971 ; Bellan-Santini et al., 1994) : à partir d'observations submersibles sur la biocenose du Détritique Côtière (DC), les algues rouges calcaires ne dépassent pas le seuil et, après une courte période transitoire de à quelques dizaines de mètres, débute la biocenose des Sables Détritiques Bathyaux (SDB) débute, ou sur les flancs des canyons sous-marins, la biocenose du Détritique du Large (DL) (Fig. 4-1, 4-3). La DL a été traditionnellement considérée comme une biocenose circalittorale, parfois confondue avec la SDB, mais les deux appartiennent sans aucun doute au Bathyal supérieur (Laubier & Emig, 1993). Le bord du plateau continental correspond à la limite supérieure de la distribution d'au moins deux espèces bathyales supérieures exclusives, le brachiopode *Gryphus vitreus* dans la SDB et le crinoïde *Leptometra phalangium* (Müller, 1841) dans la DL, tandis que la *mudline* marque la limite de leur extension en profondeur.

Fig. 4-3. Zones de densité (1-5) de *Gryphus vitreus* selon les deux types de profil (I et II) rencontrés lors des campagnes en mer. PC : plateau continental (Circalittoral); VP : biocenose de la Vase Profonde; SDB : biocenose des Sables Détritiques Bathyaux (d'après Emig, 1989b).
Le substrat de la SDB est un sédiment sableux fin à grossier bien trié, colmaté par une fraction fine pouvant atteindre 60% et contenant une grande proportion détritique de petits substrats d'origine endogène (fragments de coquilles de mollusques et de brachiopodes, d'éponges, de bryozoaires, de coraux) et des graviers, des cailloux ; cette fraction détritique est une caractéristique de la SDB (Falconetti, 1980 ; Emig, 1989a, 1989b).

Le substrat de la DL est une vase sableuse (gravier, sable, vase) (Picard, 1965 ; Emig, données non publiées).

Sur substrats vaseux (Fig. 4-2B, 4-4, 4-5), la transition entre les biocénoses circalittorales du Détritique envasé (DE) et de la Vase Terrigène Côtière (VTC) et celles de l’étage Bathyal, pourrait se faire par la biocèneose de la Vase Bathyale Supérieure (VBS) qui reste néanmoins hypothétique en raison du manque d’investigations. Cependant, d’après les données de Guille (1970), Picard (1971), Salen-Picard (1982), Albertelli et al. (1991) et Albertelli & Fraschetti (1992), il existe bien un changement faunistique au niveau du rebord du plateau avec l’apparition d’espèces dominantes (Fig. 4-4), en particulier l’ophiuride Amphiura filiformis (Müller, 1776), atteignant 8-34% de la faune selon Salen-Picard (1982) et Albertelli et al. (1991), et le polychète Maldane glebifex Grube, 1860, tandis que les espèces caractéristiques des biocénoses circalittorales DE et VTC sont absentes dans le Bathyal supérieur ; certaines espèces peuvent y atteindre des densités élevées dans certaines régions, comme l’échinodermes Brissopsis lyrifera Forbes, 1841, le pennatulaire Funicula quadrangularis (Pallas, 1766), l’éponge Thenea muricata (Bowerbank, 1858).

Rappelons pour clôturer ce chapitre que les caractéristiques biologiques ne sont qu’un des aspects permettant de définir une biocèneose, l’autre étant le biotope dont les facteurs abiotiques sont aussi régis par la géomorphologie (et physiographie). Il est donc nécessaire de prendre en considération les données de l’océanographie physique, chimique et géologique, incluant la géomorphologie, ce que les océanographes biologiques ont trop souvent négligé, voire ignoré. Car ce n’est qu’avec des résultats pluridisciplinaires concomitants que l’étagement benthique peut ou doit être défini. En outre, quand on entre dans le domaine profond, il est primordial de situer avec précision sa limite supérieure, donc le « vrai » rebord du plateau continental. La méconnaissance de cette limite et de la zone sous-jacente

3 Biocèneose : ensemble des populations liées par une dépendance réciproque et se maintenant de manière permanente et se reproduisant dans un biotope (voir Arnaud & Emig, 1987).

Population : ensemble d’individus d’une même espèce vivant en un même lieu.

4 Biotope : espace de vie d’une biocèneose, défini et délimité par la constance relative de ses facteurs abiotiques ou la prévisibilité de ses fluctuations.
avec ses caractéristiques à fort gradient avait conduit certains auteurs, à considérer le Bathyal supérieur comme une zone de transition (Ercegovic, 1957 ; voir chapitre 7). L’analyse des résultats obtenus dans cette zone demande un échantillonnage précis, car le passage au domaine profond depuis le plateau peut se faire en seulement quelques dizaines de mètres. Pour les brachiopodes (Emig, 1988, 2016, 2017a), comme pour d’autres suspensivores, l’hydrodynamisme dans le Bathyal supérieur est particulièrement propice à une distribution à forte densité.

Evolution de la présence des brachiopodes dans les biocœnoses

C’est vers la fin du Pliocène que s’opèrent progressivement quelques changements au sein des brachiopodes.

<table>
<thead>
<tr>
<th>Pliocène</th>
<th>Pleistocène- Holocène</th>
</tr>
</thead>
<tbody>
<tr>
<td>Megerlia truncata</td>
<td>Megerlia truncata</td>
</tr>
<tr>
<td>Megathiris detruncata</td>
<td>Megathiris detruncata</td>
</tr>
<tr>
<td>Argyrotheca cuneata</td>
<td>Argyrotheca cuneata</td>
</tr>
<tr>
<td>Joania cordata</td>
<td>Joania cordata</td>
</tr>
<tr>
<td>Novocrania anomala</td>
<td>Novocrania anomala</td>
</tr>
<tr>
<td>Terebratulina retusa</td>
<td>Terebratulina retusa</td>
</tr>
<tr>
<td>Megerlia eusticta</td>
<td>Terebratula terebratula</td>
</tr>
<tr>
<td>Aphelesia bipartita</td>
<td>Stenosarina sphenoidea</td>
</tr>
<tr>
<td>Terebratula terebratula</td>
<td>Terebratula sciliae</td>
</tr>
<tr>
<td>Stenosarina sphenoidea</td>
<td>Dallina septigera</td>
</tr>
<tr>
<td>Terebratula terebratula</td>
<td>Fallax</td>
</tr>
<tr>
<td>Gryphus vitreus</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4-5. Présence des brachiopodes dans les biocœnoses des étages Circalittoral (plateau continental) et Bathyal, du Pliocène à nos jours, dans le Bassin Occidental Méditerranéen. 1.- Synonyme : *Terebratula calabra* Seguenza, 1871 ; 2.- Incluant *G. minor* Philippi, 1836 ; 3.- *Stenosarina sphenoidea* (Philippi, 1844) (= former *Stenosarina davidsoni* Logan, 1998) - voir Emig (2017a). Abréviations des biocœnoses méditerranéennes : DC = Détritique Côtière ; DE = Détritique Envasé ; VTC = Vase Terrigène Côtière ; C = Coralligène. Les espèces fossiles sont celles citées dans des travaux de paléoécologie, alors qu’il existe une longue liste de variétés et d’espèces pouvant leur être référables dans les travaux de systématique (voir Appendice B).
5. Les espèces de brachiopodes du Bathyal méditerranéen français

En mer Méditerranée, avec la création de stations marines universitaires à la fin du XIXe siècle, la proximité de la pente continentale par rapport à la côte a facilité les dragages profonds à partir du Laboratoire Arago5 (Banyuls), de la Station Marine d’Endoume6 (Marseille), de la Station Biologique de Villefranche-sur-mer7 et du Musée Océanographique de Monaco8 (Fig. 5-1, 5-2), ainsi que les plongées en submersible sur les fonds à brachiopodes depuis Toulon9. À l’exception du Golfe du Lion, la largeur du plateau continental se situe entre quelques centaines de mètres et quelques milliers de mètres, alors que la limite des eaux territoriales est de 12 milles en mer Méditerranée, au-delà ce sont les eaux internationales. Depuis plus de deux siècles, les brachiopodes méditerranéens actuels et fossiles ont été largement échantillonnés et étudiés peut être plus que dans d’autres zones équivalentes en surface (Tableau 2).

Il faut souligner que nombre d’espèces marines présentes en mer Méditerranée vivent aussi dans l’Océan Atlantique ou y ont des formes vicariantes, généralement avec une distribution bathymétrique moins profonde (Laubier & Emig, 1993 ; Emig & Geistdoerfer, 2004, 2008).

Tableau 2. Liste des brachiopodes des côtes françaises méditerranéennes (par ordre systématique, récoltés dans le Bathyal, avec l’intervalle bathymétrique connu pour chaque espèce et leur présence en Manche et dans l’océan Atlantique (voir Emig, 2016, 2017a ; et chapitre 9). R = Rhynchonellata ; terebratul = Terebratulidina ; terebratel = Terebratellidina. * Nombre de références pour chacune de ces espèces en mer Méditerranée sur la totalité des références citant l’espèce (d’après ma base de données bibliographiques) ; ces références ont servi à établir les cartes de distribution en mer Méditerranée (voir Fig. 5-3 à 5-9 ; et Emig, 2018 ; Emig et al., 2018).

<table>
<thead>
<tr>
<th>Espèce</th>
<th>Manche</th>
<th>Atlantique</th>
<th>Bathymétrie connue (en m)</th>
<th>connue depuis</th>
<th>Classification</th>
<th>Références *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Novocrania anomala</td>
<td>quelques m - 1478</td>
<td>Oligocène</td>
<td>131 / 285</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gryphus vitreus</td>
<td>78 - 2578</td>
<td>Miocène</td>
<td>132 / 232</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terebratulina retusa</td>
<td>9 - 3614</td>
<td>Miocène</td>
<td>109 / 335</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Megathiris detruncata</td>
<td>5 - 896</td>
<td>Éocène</td>
<td>90 / 164</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platidila anomioides</td>
<td>8 - 2190</td>
<td>Miocène</td>
<td>60 / 159</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nectaria truncata</td>
<td>10 - 1970</td>
<td>Miocène</td>
<td>120 / 236</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5 Aujourd’hui nommé Observatoire Océanologique de Banyuls-sur-Mer. Ce laboratoire a été fondé en 1881 par Henri de Lacaze-Duthiers (1821-1901), professeur à l’Université de Paris.

6 Aujourd’hui, les locaux se partagent entre l’Institut Méditerranéen de Biodiversité et d’Ecologie marine et continental (IMBE) et l’Institut Méditerranéen d’Océanologie (MIO). Elle a été fondée en 1889 par Antoine-Fortuné Marin (1846-1900), professeur à l’Université d’Aix-Marseille, sur le site à Malmousque, un petit quartier de Marseille, face à la mer.

7 Aujourd’hui nommée Observatoire Océanologique de Villefranche-sur-mer. Elle a été créée en 1884 par Alexis de Korotneff (1852-1915), professeur à l’Université de Kiev, dans les anciens locaux de la base navale russe. Ce n’est qu’en 1932 que les locaux sont cédés à la France et mis à la disposition de l’Université de Paris.

8 Ce musée fut fondé en 1889 par le Prince Albert 1er de Monaco (1848-1922) – de nombreux brachiopodes furent récoltés et décrits au cours de ses campagnes en mer Méditerranée et dans l’océan Atlantique. Il appartient à la Fondation Albert 1er, Prince de Monaco (fondation de droit français).

9 Le submersible utilisé pour les trois plongées avait l’Arsenal de Toulon (Marine nationale) comme port d’attache, créé en 1609 par le roi de France Henri IV. La Mission Océanographique de Méditerranée qui y est installée m’a été d’une grande aide dans l’exploitation de la bathymétrie des stations de mes campagnes par la mise à disposition de cartes marines très précises permettant d’obtenir des profils détaillés des radiales.
biocénoses du plateau continental, mais avec des densités maximales dans l’étage Bathyal. Toutes sont connues sous forme fossile (Tableau 2). Bien des auteurs, notamment paléontologues, principalement italiens, français et allemands, les ont parfois décrites sous diverses variétés ou espèces, principalement sur des différences de et dans la coquille, qui ne sont pas toutes des caractères taxinomiques, mais n’en sont que des variations, cette façon de faire de la systématique encore en vigueur de nos jours mérite nécessite une explication (voir Appendice A).

Fig. 5-1. Carte générale des zones des campagnes en mer pour étudier la distribution des brachiopodes le long des côtes françaises (pour plus de détails voir Matériel et les Annexes). Les étoiles situent les laboratoires marins, dont trois du CNRS-Université, et l’Arsenal de Toulon pour les plongées en submersible (voir texte et notes).

Fig. 5-2. Carte de la Commission de la Carte Géologique du Monde (Paris), montrant le relief sous-marin (reproduit avec l’autorisation de la CCGM - http://www.ccgm.org).
En plus, la systématique et distribution biocénologique des brachiopodes fossiles et actuels en mer Méditerranée doivent s’étudier en prenant en compte l’histoire géologique toute particulière et complexe de cette mer, principalement depuis le début du Néogène. Or, elle est souvent méconnue tout comme les concepts de la bionomie benthique méditerranéenne. C’est, pour ne pas l’avoir prise en considération, que certains auteurs récents, comme Cohen et al. (2014) ou Robinson (2014, 2017), en sont arrivés à des conclusions qui ne sont pas cohérentes avec l’écologie des brachiopodes méditerranéens et de leurs espèces vicariantes atlantiques. Les seuls caractères de la coquille sont insuffisants pour décrire une nouvelle espèce quand leurs variations n’ont pas été étudiées et formellement identifiées, tout comme la non-prise en compte de la distribution biocénologique d’une population, ce qui est fondamental en bionomie benthique méditerranéenne tant pour les espèces actuelles que fossiles.

En outre, la bibliographie de ces espèces pourtant fort importante (Tableau 2) comporte principalement des auteurs du pourtour méditerranéen; quant aux auteurs anglophones, ils «oublient» souvent de lire et de citer les travaux de ces auteurs qui, évidemment, n’écrivent pas en anglais. Cette situation dure depuis le XVIIIe siècle, comme le mentionne Emig (2012) sur les descriptions de brachiopodes par le Nissart Giuseppe Antonio Risso (1777-1845).

Les Brachiopodes ne font pas l’objet d’une redescription ici, car au cours des prélèvements, leur identification est facile à faire. Néanmoins, *Gryphus vitreus* a été intensivement étudié pour les variations de certains caractères, variations parfois considérées elles-mêmes par les paléontologues comme des caractères valides. Les résultats ont servi ensuite à reconsidérer le statut d’autres espèces fossiles, notamment du Mésozoïque, tout comme la systématique stratigraphique. Malgré une attention toute particulière pour d’autres espèces de petite taille, telles que *Argyrotheca* et *Lacazella*, aucun individu n’a été récolté lors des campagnes listées sur le Tableau 1 (voir aussi chapitre 8).

Enfin, à l’exception de *Gryphus vitreus* qui vit sur un substrat meuble, toutes les autres espèces de brachiopodes sont fixées sur un substrat dur, généralement rocheux ou biologiques.

Phylum Brachiopoda

Sous-phylum Craniiformea

Classe Cranidata

Ordre Cranida

Super-famille Cranioidea

Famille Cranidae

Novocrania Lee et Brunton, 2001

Novocrania anomala (Müller, 1776) [*Patella anomala* Müller, 1776]

Novocrania anomala (Müller, 1776) [*Patella anomala* Müller, 1776]

les deux supposées espèces sont : « mainly in the degree of calcification of the valves and the relative development and placement of the dorsal valve muscle scars. » ; or, ces caractéristiques peuvent être interprétées comme des simples variations, en tout cas ils ne sont pas suffisant, sauf à prouver qu’il s’agit de caractères phylénetiques (d’où l’attente d’une analyses cladistique). Et pour être complet, ces auteurs mentionnent ensuite : « Neither the shell morphology nor geographical distribution of the two forms appears to be the result of ecological factors, such as depth or hydrodynamic action. », mais il leur reste à le prouver, car ce n’est aujourd’hui qu’une supposition. Comme ces auteurs, Robinson (2017) est resté cantonner sur des descriptions de la seule coquille sans prendre en compte ni l’anatomie, ni l’histoire, ni la distribution de N. anomal a pour la dite variété turbinata (Fig. 5-3) : comment cet auteur peut-il expliquer que, dans les environs de Marseille, il identifie un ou deux exemplaires de N. anomal a et de N. turbinata attribuant les exemplaires de Logan (1979) à la première espèce et à mes exemplaires à la seconde d’après mes seules photographies publiées (Emig, 2014), alors qu’il s’agit probablement, dans ce cas précis, des exemplaires de mes propres récoltes. En outre, Robinson (2017) a oublié de s’intéresser aux formes fossiles de N. anomal a, connues depuis l’Oligocène dans le domaine méditerranéen (Bitner et al., 2013), sauf à mentionner qu’en l’absence de matériel les identifications demeure problématique ! En revanche, Cohen et al. (2014) rejettent la « traditional morphology » tout en l’utilisant pour identifier le matériel sur lequel ils ont fait les analyses moléculaires (Emig, 2014).

Avoir deux espèces d’un même genre dans la même niche n’est possible, bien qu’exceptionnel, qu’en ayant des différences importantes, notamment dans l’éthologie et la reproduction (maturation des gonades, type larvaire…). Rappelons que des caractères écologiques peuvent aussi être des
caractères taxinomiques surtout quand on travaille sur des espèces vivantes (voir Appendice A). Ces remarques peuvent aussi se répéter pour les synonymes de Megerlia truncata et de Platidia anomoides.

Faire appel à la génétique ne permet pas de résoudre le problème, car l’identification des spécimens n’est basée que sur la morphologie de la coquille et en rien sur l’anatomie, alors que justement la génétique n’utilise que les parties molles. Aussi, considérons-nous qu’il n’existe à ce jour qu’une seule espèce de Novocrania en mer Méditerranée, qu’elle soit nommée N. anomala ou N. turbinata, mais, dans ce dernier cas, il faudra établir une diagnose sur des caractères phylogénétiques avec leur variations au-delà de ceux que la seule coquille, ce qui n’est pas toujours techniquement à la portée des paléontologues. Pourtant, ces derniers « négligent » les caractères anatomiques, ce qui entraîne l’impossibilité de faire une analyse cladistique. Il reste à entreprendre une étude approfondie des variations des caractères taxinomiques (incluant l’anatomie et l’écologie) de N. anomala au sein des différentes populations méditerranéennes et de les comparer avec ceux d’exemplaires provenant de Sicile (Fig. 5-3), pouvant être considérés comme pouvant se rapporter à N. turbinata ; en outre, plusieurs dizaines d’exemplaires de diverses provenances sont nécessaires à l’étude des caractères.

D’après nos récoltes (incluant de nombreuses observations en plongée en scaphandre autonome), N. anomala vit sur substrat dur (rocheux) depuis quelques mètres de profondeur jusque vers 280 m (Emig, 1997b) ; au-delà, il devient impossible d’échantillonner le long des tombants et autres structures rocheuses profondes, et donc de savoir si sa distribution est plus profonde. Elle est présente dans différentes biocénoses des étages infralittoral, circalittoral et bathyal (Fig. 4-5) : rappelons que l’écologie doit être prise en compte en taxinomie. N. anomala est parfois abondante, notamment avec Terebratulina retusa, et aussi la présence de Gryphus vitreus et Megerlia truncata, dans la biocénose bathyale des Coraux blancs profonds (aussi nommée « community of Cold-Water Corals ») (Pérès, 1982, 1985 ; Taviani et al., 2017).

Sous-phylum Rhynchonelliformea
 Classe Rhynchonellata
 Ordre Terebratulida
 Sous-ordre Terebratulidina
 Super-famille Terebratuloidea
 Famille Terebratulidae
 Sous-famille Gryphinae

Gryphus Megerle von Mühlfeldt, 1811

Gryphus vitreus (Born, 1778) [Anomia vitrea Born, 1778]

Localité-type: Port-Mahon, Minorque (Iles Baléares, Espagne).

Distribution : Fig. 4-3, 4-5, 5-4, Pl. 2 ; voir chapitres 8 et 9.

10 Extrait du Code International de Nomenclature Zoologique (ICZN, 1999)

Recommandation 13A. Présentation des éléments de différenciation. Lorsqu’il décrit un nouveau taxon nominal, un auteur devrait indiquer clairement les éléments de différenciation de ce taxon. En donnant une diagnose, c’est-à-dire un résumé des caractères qui différencient ce taxon nominal des taxons comparables.

Diagnose, s. f. Énoncé écrit établissant l’ensemble des caractères d’un taxon qui suffisent à le distinguer des autres taxons auxquels il peut être utilement comparé.

Recommandation 13A. Intent to differentiate. When describing a new nominal taxon, an author should make clear his or her purpose to differentiate the taxon by including with it a diagnosis, that is to say, a summary of the characters that differentiate the new nominal taxon from related or similar taxa.

Diagnosis, n. A statement in words that purports to give those characters which differentiate the taxon from other taxa with which it is likely to be confused.
Gryphus vitreus est connu depuis le Miocène en mer Méditerranée, notamment dans les gisements fossiles bathyaux en Italie ; parfois de petits spécimens ont aussi été nommés **Gryphus minor** qui a fait l’objet de nombreux débats au sein des paléontologues quant à son statut (voir Appendice B).

![Figure 5-4. Répartition de **Gryphus vitreus** en mer Méditerranée.](image)

Gryphus vitreus est aujourd’hui la plus grande des espèces de brachiopodes vivantes en mer Méditerranée. Les variations de la coquille et de ses caractères taxinomiques internes, au sein des milliers d’exemplaires récoltés, ont surpris les paléontologues de la RCP 727, notamment Bernard Laurin et Jean-Henri Delance (Université de Dijon, France) : c’est en juxtaposant des individus de taille similaire, dont la coquille varie depuis une forme ronde jusqu’à une pentagonale, que ces chercheurs en sont arrivés à une ligne formée par une centaine d’exemplaires. En l’absence d’une telle comparaison, des paléontologues auraient pu créer au moins trois espèces de **Gryphus** sur de simples variations des caractères, dont certains ne sont en rien taxinomiques, et encore moins phylogénétiques.

En plus de ces variations de la forme de la coquille s’ajoute un éventail complet des variations d’autres caractères, notamment du brachidium, au sein des populations de **G. vitreus** : elles sont illustrées sur la Fig. 5-5 (Boullier *et al.*, 1986; Álvarez & Brunton, 2008). Ces résultats sont à comparer.
avec la variabilité établie chez le synonyme G. minor par Saccà (1985) qui n’évoque à aucun moment une comparaison avec G. vitreus. Il apparaît donc clairement que décrire une nouvelle espèce ou même un nouveau genre en ne disposant que de quelques individus peut rapidement conduire à prendre une variations pour un critères discriminant par rapport à une autre espèce, voire un genre. La littérature sur les espèces actuelles et fossiles de brachiopodes regorge d’exemples; par exemple: - dans l’Antarctique, ces espèces représentent environ 30% (Emig, 2017b); - dans le Mésozoïque en France, 16 espèces de « Lingula » ont été décrites alors que l’on peut estimer à seulement une, voire deux espèces valides dans ce stock; - le cas du genre Tichosina avec dix-neuf d’espèces décrites par Cooper (1977), la plupart récoltées au cours de la même campagne en mer dans la mer des Caraïbes (Rojas et al., 2015).

G. vitreus est la seule à vivre sur un substrat meuble formé par un sable détritique, assez bien classé, contenant une forte proportion de petits substrats durs (surtout coquilliers) sur lesquels Gryphus s’attache par son pédoncule. Elle est une des espèces caractéristiques dans la biocénose des Sables Détritiques Bathyaux (SDB) (Fig. 4-1, 4-2, 4-3 ; Pl. 2) dans l’étage bathyal supérieur. Le biotope est caractérisé par un hydrodynamisme constant d’intensité moyenne s’atténuant en profondeur, par de faibles variations annuelles de température et de salinité (Fig. 4-2). Cette biocénose s’étend sous forme de ceinture horizontale dans la partie supérieure de la pente continentale; cette extension dépend de deux facteurs principaux: la morphologie de la pente et la direction des courants sur cette pente (Fig. 4-1, 4-3). Les conséquences sur la distribution de G. vitreus peuvent se résumer en deux points:

• plus la pente est faible, moins les courants sont importants et moins forte l’extension bathymétrique en profondeur.

• plus la pente est forte, plus les courants sont forts, et plus l’extension en profondeur est grande, (jusqu’à 300 m au large du Cap Corse).

G. vitreus est aussi présente, mais peu abondante, avec les autres espèces de brachiopodes, dans la biocénose bathyale des Coraux blancs profonds (aussi nommée « community of Cold-Water Corals ») (Pérès, 1982, 1985 ; Taviani et al., 2017).
L’infestation des coquilles de *Gryphus* par l’algue chlorophycée *Ostreobium* a conduit à revoir et redéfinir la limite inférieure du système phytal en mer Méditerranée (voir chapitre 6.)

Dans les années 1985, le Cap Corse et la Balagne (N et NW de la Corse) ont été ravagés par des feux de forêts, ce qui a entraîné les années suivantes de fortes décharges sédimentaires provoquant un envasement partiel du Bathyal supérieur. La zone affectée avait été prospectée avant et après ces événements (Emig, 1985a, 1989b, 1989c, 1990) : les effets analysés ont permis de modéliser une possible fossilisation par envasement pour mieux appréhender de futures interprétations paléontologiques de gisements de brachiopodes.

Des travaux sur la prédation de *G. vitreus* ont concerné les actions de gastéropodes naticidés, ce qui a permis de remettre en cause certains concepts pour les gisements fossiles (Delance & Emig, 2004). D’autres expériences ont montré que *G. vitreus* pouvait être une proie pour des langoustes (Emig, 1990). En effet, la langouste bathyale, dite du large, *Palinurus mauritanicus* Gruvel, 1911, vit dans la même biocène, qui est une zone de pêche par casiers en Provence et par filets emmêlants en Corse. Elles fragmentent avec leurs mandibules broyeuses les deux tiers antérieurs de la coquille qu’elles tienent avec leurs maxillipèdes, avant de manger du contenu de la coquille. Ce procédé pourrait en partie expliquer la présence de tels fragments dans les sédiments.

Un dernier point à ne pas négliger : selon la morphologie, le Bathyal est aussi zone de pêche par chalutage, ce qui perturbe à la fois la distribution et la densité de cette espèce, il faut en tenir compte dans les résultats (Emig & García-Carrascosa, 1991). Dans notre zone d’étude, ceci est le cas dans le Golfe du Lion et très rarement sur les côtes provençales ; c’est évidemment la morphologie de la pente qui conditionne la possibilité de chaluter. En outre, le rejet des refus de chalutage peuvent se produire au-delà des zones de récolte ce qui peut amener à des signalisations de brachiopodes hors de leur biotope naturel, donc à des profondeurs inhabituelles ce que les auteurs de telles signalisations ne prennent jamais en compte.

Sous-phylum Rhynchonelliformea
- **Classe Rhynchonellata**
- **Ordre Terebratulida**
- **Sous-ordre Terebratulidina**
- **Super-famille Cancellothyridoidea**
- **Famille Cancellothyrididae**
- **Sous-famille Cancellothyridinae**

Terebratulina retusa (Linné, 1758) [*Anomia retusa* Linné, 1758]

Synonymes : *Anomia capitserpentis* Linné, 1758 (voir Linné, 1767 et Emig et al., 2015) ; *Terebratula capitserpentis* : Retzius (1781) ; *Criopoderma capit serpentis* : Poli (1795) ; *Terebratulina capitserpentis* : d’Orbigny (1847) ; *Terebratula emarginata* Risso, 1826 : Dall (1920) ; *T. quadrata* Risso, 1826 ; *T. caput-serpentis* Philippi, 1830 ; *T. chemnitzii* Küster, 1830 ; *T. caputserpentis* var. *mediterranea* Jeffreys, 1878 ; voir aussi Álvarez et al. (2005, p. 220), Emig (2012, 2017a, 2018), Emig et al. (2018).

Localité-type : Linné (1767) mentionne p. 1151 : « *Habitat en pelago Norvegico* » et p. 1153 pour *caput-serpentis* : « *Habitat en abysso M. Norvegici* »

Distribution : Fig. 4-5, 5-6 ; voir chapitres 8 et 9.

Terebratulina retusa vit attachée sur des substrats rocheux souvent concretionnés, ou des coquilles, des coraux morts... ; elle est fréquemment accompagnée par les autres brachiopodes cités ici, et notamment par *Megathiris detruncata* : dans 43 stations sur 46, pour un total de 1129 individus de *T. retusa* et de 639 de *M. detruncata* (voir chapitre 8). Elle est aussi présente, souvent très abondante, avec les autres espèces de brachiopodes, dans la biocoenose bathyale des Coraux blancs profonds.

11 Rarement la langouste rouge ou commune *Palinurus elephas* (Fabricius, 1787), vivant sur le plateau continental, avec une extension possible au-delà du rebord jusque vers 150 m, voire au-delà. Cette espèce est une espèce emblématique de l’océan Nord Atlantique et de la Méditerranée ; c’est la plus chère des langoustes.

12 Depuis juin 2017, l’Union Européenne interdit le chalutage à plus de 800 m de profondeur dans ses eaux.
(aussi nommée « community of Cold-Water Corals »). Sur des branches mortes de Madrepora et de Lophelia, Taviani et al. (2017) mentionnent une densité pouvant dépasser 450 individus pour 0,2 m² avec Novocrania anomala, et quelques exemplaires de Gryphus vitreus et de Megerlia truncata, vers 400 m de profondeur.

Sa coquille à deux couches, outre le périostracum, se désagrège en quelques mois dans le milieu naturel (Collins, 1986 ; Emig, 1990), ce qui explique une relative rareté dans la signalisation de fossiles pour T. retusa.

Entre les populations atlantiques et méditerranéennes de T. retusa, les analyses moléculaires et morphométriques montrent de faibles variations et divergence génétique (Cohen et al., 1993), confirmant que ces populations appartiennent bien à une même espèce. Mais quant ces auteurs déduisent que les populations méditerranéennes qu’ils ont étudié (des côtes de Provence) dateraient d’environ 10 000 ans, mais sans faire allusion à la présence de cette espèce en Méditerranée depuis le Miocène, voire auparavant.

Figure 5-6. Répartition de Terebratulina retusa en mer Méditerranée, ainsi que les signalisations de formes fossiles. A. et B. voir Fig 5-3 pour la légende des fonds de cartes.
Sous-phrasey Rhynchonelliformea
Classe Rhynchonellata
Ordre Terebratulida
Sous-ordre Terebratellidina
Super-famille Megathyridoidea
Famille Megathyrididae
Megathiris d’Orbigny, 1847

Megathiris detruncata (Gmelin, 1789) [*Anomia detruncata* Gmelin, 1789, p. 3347]

Synonymes: *Anomia decollata* Chemnitz, 1785 ; *Terebratula aperta* Blainville, 1828 ; *Terebratula dimidiata* Scacchi, 1833
Distribution : Fig. 4-5, 5-7, Pl. 2 ; voir chapitres 8 et 9.

Megathiris detruncata est une petite espèce souvent cryptique, vivant dans des concretionnements sur substrats rocheux, principalement dans le Circalittoral et le Bathyal ou dans les grottes sous-marines. Elle se fixe sur des coraux morts (Pl. 2). Elle est généralement accompagnée par une ou plusieurs autres espèces de brachiopodes, notamment *Terebratulina retusa*.

![Figure 5-7. Répartition de Megathiris detruncata en mer Méditerranée, ainsi que les signalisations de formes fossiles. A. et B. voir Fig 5-3 pour la légende des fonds de cartes.](image-url)
Sous-phylum Rhynchonelliformea
Classe Rhynchonellata
Ordre Terebratulida
Sous-ordre Terebratellidina
Super-famille Platidiioidea
Famille Platidiidae
Sous-famille Platidiinae
Platidia Costa, 1852

Platidia anomoides (Scacchi et Philippi, 1844, in Philippi, 1844) [*Orthis anomoides* Scacchi et Philippi, 1844, in Philippi, 1844]

Synonymes : *Terebratula appressa* Forbes, 1843 ; *Morrisia anomoides* : Davidson (1852, 1869) ; *Morrisia davidsoni* Eudes-Deslongchamps, 1855 ; *Platidia davidsoni* Dall, 1870 ; *Platidia anomoides* : Jeffreys (1878) ; *Platydia davidsoni* : Davidson (1887)
Localité-type : eaux marines siciliennes. Connue depuis le Miocène. La localité-type de *P. davidsoni* est au large de Tunis (Tunisie), espèce décrite par Eudes-Deslongchamps (1855, p. 443).

Distribution : Fig. 5-8 ; voir chapitres 8 et 9.

Figure 5-8. Répartition de *Platidia anomoides* en mer Méditerranée, ainsi que les signalisations de formes fossiles. A. et B. voir Fig 5-3 pour la légende des fonds de cartes.

Platidia anomoides n’a été récoltée qu’exceptionnellement dans 13 stations. *P. davidsoni* est considérée comme synonyme de *P. anomoides* : les deux espèces cohabitaient notamment en mer Méditerranée et leur aspect externe est identique. Certains auteurs n’ont utilisé que la largeur de la
coquille légèrement plus grande pour *P. davidsoni* et la présence de nombreuses petites pustules sur la valve ventrale d’après des caractères suggérés par Cooper (1973), Brunton & Curry (1979), pour distinguer ces espèces. Or, Logan (1979), rejetant les arguments de Cooper, ne trouve qu’un seul critère pouvant distinguer les deux espèces, à savoir que le support brachial à un stade plus avancé de développement chez *P. anomaloides* que chez *P. davidsoni* ; ceci a déjà été souligné par Davidson (1886) en mentionnant la similitude des deux espèces. Aussi, en l’absence d’une étude sur les variations de ce support et de son caractère phylogénétique indéniable, prouvant qu’un stade de développement du brachidium peut être un caractère taxinomique constant, *P. davidsoni* est traité comme synonyme de *P. anomaloides*. Logan (1979) précise : « As *P. davidsoni* represents merely a less advanced state of development of the brachial support than in adult *P. anomaloides*, no new genus has been created for its reception at the present time. » Enfin, beaucoup de localisations sont sujettes à caution, car les auteurs ont attribué leurs exemplaires à l’une ou l’autres des espèces en fonction d’observations subjectives. Ce cas *Platidia* est similaire à celui de *Novocrania anomala* (voir Emig, 2014 ; et Appendice A).

En outre, l’historique de *Terebratula seminulum* Philippi, 1836 est développé dans l’Appendice C. Car, selon certains auteurs, elle serait synonyme de *Platidia anomaloides* ou/et de *Joania cordata*, alors que des travaux récents dans le genre *Amphithyris*, inconnu en mer Méditerranée et avec une distribution restreinte au sud de l’Hémisphère Sud, alors que la localité type de *T. seminulum* est Trapani en Sicile (Italie).

Sous-phylum Rhynchonelliformea
Classe Rhynchonellata
Ordre Terebratulida
Sous-ordre Terebratellidina
Super-famille Kraussinoidea
Famille Kraussinidae
Megerlia King, 1850

Megerlia truncata (Linné, 1767) [*Anomia truncata* Linné, 1767]

Synonymes : *Terebratula truncata* : Retzius (1781) ; *Criopoderma truncatum* : Poli (1795) ; *Mühlfeldtia truncata* : Fischer et Œhlert (1891) ; *Mühlfeldtia disculus* : Dall (1920) (non Pallas 1766)
Terebratula monstruosa Scacchi, 1833 ; *Megerlia truncata* var. *monstruosa* : Montecristo (1875) ; *Mühlfeldtia monstruosa* Fischer et Œhlert, 1891 ; *Pantellaria monstruosa* : Dall (1920).
Morrisia gigantea Deshayes, 1863.
Megerlia echinata (Fischer et Œhlert, 1890).

Localité-type : « *Habitat in Pelago Norvegico supra corallin* ». Connue depuis le Miocène.
Distribution : Fig. 5-9, Pl. 2 ; et voir chapitres 8 et 9.

Megerlia truncata est surtout fixée sur des substrats relativement plats et verticaux, notamment sur les branches mortes du scléractiniaire *Dendrophyllia cornifera* sur lesquelles elle peut atteindre des densités de 10-20 individus par branche (Pl. 2). Il s’agit aussi bien de thanatocoenoses que d’espèces encore vivantes alimentant ces fonds particuliers. *M. truncata* est aussi présente sur des substrats rocheux plats en même temps de *Novocrania anomalia*. Ces deux espèces cohabitent dans 41 stations sur 47 : 30 stations en Corse avec un ratio de présence de 69 % (765 individus) pour *Megerlia* et seulement 31 % pour *Novocrania* (243 ind.) ; 11 stations en Provence avec respectivement 73 % (267 ind.) et 27 % (37 ind.).

Comme l’avait noté Thomson (1927), *Megerlia truncata* peut être très variable dans la forme de sa coquille et de l’adapter en fonction de son environnement. Cette caractéristique avait entraîné la description de plusieurs espèces et variétés, qui ont longtemps fait débat : *M. monstruosa* (même avec la création du genre *Pantellaria*), *M. echinita* et *M. gigantea* (voir Bitner & Logan, 2016 ; Álvarez et al.,
2017 ; Emig et al., 2018). Le matériel décrit sous *M. gigantea* est déposé au Muséum National d'Histoire naturelle de Paris : il a été étudié et comparé aux exemplaires méditerranéens de *M. truncata*. Deshayes (1863) a décrit *Morrisia gigantea* comme « L’espèce de Bourbon est la plus grande connue du genre, » à partir d’un seul exemplaire récolté sur un crustacé à 366 m de profondeur (200 brasses).

La prédation par des gastéropodes perforants a été étudiée chez des *Megerlia* fossiles dans le Pliocène en Algérie (Baumiller et al., 2006) ; or, celle-ci est extrêmement rare d’après les prélèvements effectués au cours des campagnes citées dans ce travail.

![Diagram](image)

Figure 5-9. Répartition de *Megerlia truncata* en mer Méditerranée, ainsi que les signalisations de formes fossiles. **A.** et **B.** voir Fig 5-3 pour la légende des fonds de cartes.
Planche 2. **A-B**: branches du scléractiniaire *Dendrophyllia cornigera*, avec de nombreux brachiopodes (*Novocrania anomala, Megerlia truncata, Platidia anomoioides*), st. BM 30 (Corse), A 36, A 91 (Provence). **C**: *Megerlia* fixée sur *Novocrania*. **D**: Fond rocheux (-255 m) au large de l’Île de Porquerolles (Provence, France), avec *Novocrania anomala, Megathiris detrunctata* et de nombreuses *Megerlia truncata*, dont certaines présentent la forme *monstruosa* avec déformation de la coquille en fonction du substrat. © Clichés C.C. Emig.

Nota : De nombreuses photographies de diverses espèces de brachiopodes sont en ligne à http://paleopolis.rediris.es/LOPH-Album/
6. Distribution d’Ostreobium dans les coquilles de Gryphus

La première signalisation de l’algue verte unicellulaire perforante Ostreobium quekettii Bornet et Flahaut, 1889 dans la coquille de Gryphus vitreus, une espèce strictement bathyale, a été faite en mer Méditerranée par Fredj & Falconetti (1977), puis étudiée par Fredj-Reygrobellet & Fredj (1982). O. quekettii, considérée comme une espèce cosmopolite, est perforante dans des coquilles de mollusques et de brachiopodes ; elle se reproduit par des zoospores à quatre flagelles (voir Kornmann & Sahling, 1980 ; Cormaci et al., 2014).

Les coquilles de Gryphus vitreus ne sont révélées être rarement infestées le long des côtes continentales françaises (Emig, 1989c), à l’exception d’individus provenant des environs des Îles d’Hyères. Plus à l’ouest de ces îles, les eaux sont relativement turbides, avec une pénétration de la lumière fortement réduite en liaison avec le courant ligure qui est la composante nord du courant anticyclonique circulant dans le bassin occidental de la mer Méditerranée. Ce courant ligure draine d’Est à l’Ouest, le long des côtes, les importants rejets en mer des villes et des fleuves d’Italie et de France et ensuite vers les côtes espagnoles.

En revanche, la limpidité des eaux est meilleure en Corse où des nombreux Gryphus infestés ont été récoltés dans de très nombreuses stations de dragages et de chalutages, notamment le NW et NE de la Corse et au Nord du Cap Corse (Fig. 6-1) (Emig, 1985a, 1989a) : huit radiales ont été choisies, représentant les différents profils géomorphologiques et zones de densités de G. vitreus (Fig. 4-1, 4-3) ; les comptages de Gryphus ont été faits en se basant sur la couleur des coquilles : blanche estimée sans infestation, verdâtre à vert avec Ostreobium. Les données brutes sont indiquées dans les tableaux du chapitre 8.

Les résultats en Gryphus verts (Fig. 6-1) sont brièvement commentés. Globalement, les pourcentages sont faibles à nul dans la zone 1 (Fig. 4-3), ce qui peut être expliqué par l’effet de seuil qui se manifeste au niveau du rebord du plateau continental avec un hydrodynamisme particulier, pouvant être notoirement vertical sur plusieurs mètres, voire une dizaine de mètres. C’est dans les zones 2 et 3 que s’observent les plus forts pourcentages, jusque vers une profondeur d’environ 150 à 200 m, et jusqu’à plus de 300 m au Nord du cap Corse. Plusieurs radiales (Fig. 6-1) demandent quelques explications complémentaires, incluant des similitudes entre les radiales C4, C5 et C8 quant aux conséquences d’envasement, ce qui peut être un cas de taphonomie (Emig, 1989c, 2002).

- **Radiale C6N.** L’extension en profondeur des Gryphus verts est la plus importante, jusqu’à 310-315 m, car le plateau continental au Nord du Cap Corse est soumis à un fort hydrodynamisme, avec une faible turbidité en profondeur, liée à son éloignement des côtes.
- **Radiale C4.** Suite à de nombreux feux de forêts dans l’arrière–pays en Balagne (Emig, 1989c), il s’est produit un envasement du plateau et du rebord de la pente continentale, jusque vers 135 m de profondeur, avec une influence s’étendant sur tout le plateau « offshore » jusque vers 150 m. Cela a induit une baisse sensible de la densité des individus vivants de G. vitreus et une diminution nette des coquilles de G. vitreus infestées par Ostreobium, comme pour la radiale C 5.
- **Radiale C5.** Entre 1985 et 1987, Emig (1989c, 1990) mentionne une importante mortalité de G. vitreus, avec forte baisse de la densité jusque vers 170-180 m de profondeur ; au-delà, on retrouve une densité normale de G. vitreus (environ 250-300 individus par dragage). La présence de coquilles infestées par l’Ostreobium est limitée à 130-135 m. Cette radiale est située à proximité d’un canyon sous-marin. L’origine de l’envasement pourrait être liée à de fortes décharges terrigènes par suite de la brutale déforestation par le feu des massifs montagneux côtiers environnants.
- **Radiale C8.** L’envasement de la radiale C8 provient probablement de la proximité de l’embouchure du fleuve Le Golo avec des décharges alluvionnaires, ainsi que des « graus » de l’étang de Biguglia (Emig, 1989c). Sa densité en Gryphus est faible avec un peu de coquilles infestées par Ostreobium.
Fig. 6-1. Localisation des radiales avec les pourcentages de *Gryphus « verts »* le long du profil de chaque radiale avec les densités de *Gryphus* (voir explication Fig. 4-3).
La limite biologique entre le système phytal et aphytal, définie par la flore et la faune benthiques, fut un débat au cours du siècle dernier, qui n’a guère évolué depuis. En résumé, selon Pérès & Picard (1964) : « l’ensemble des quatre étages... constitue le système littoral, ou encore puisqu’il est caractérisé par la présence de végétaux benthiques chlorophylliens, le système phytal. » Pérès (1982) mentionne : « In the phytal system four vertical zones may be distinguished. Their names always include the suffix “littoral” » et que l’étage le plus profond dans le système phytal, nommé Circalittoral, a comme limite inférieure « down to the maximal depth consistent with the survival of photoautotrophic multicellular algae. »

Ce n’est qu’avec les nombreuses campagnes en mer faites dans le cadre du programme RCP-CNRS 728 (1983-1989), avec une approche multidisciplinaire, que la position de cette zone dite intermédiaire a été définie comme étant le Bathyal supérieur (Emig, 1989a, 1889b, 1997a ; Laubier & Emig, 1993 ; Emig & Geistdoerfer, 2004). En conséquence, la limite du système phytal s’avère indépendante de l’étagement, de la bathymétrie et de la distribution des seuls organismes pluricellulaires photosynthétiques benthiques.

En fait, la limite au niveau du rebord du plateau continental entre le Circalittoral et le Bathyal n’est pas liée à l’éclairement, mais à un changement de facteurs (donc de biotope dans le cas présent), parmi lesquels l’éclairement ne peut être retenu, ni utilisé comme facteur discriminant. Cette limite marque (ou n’est que) le passage du domaine littoral au domaine profond (Emig, 1997a), pas entre le système phytal et aphytal. Car la limite entre ces deux systèmes est fonction de la turbidité des eaux.

Les résultats sur la présence de l’algue verte unicellulaire Ostreobium dans les coquilles de Gryphus (voir chapitre 6, ci-dessus) a permis de reprendre le débat sur la limite du système phytal en confirmant nos propos ci-dessus : la distribution des coquilles avec Ostreobium est bien liée à la pénétration en profondeur. Pratiquement absentes sur les côtes provençales à cause de la turbidité des eaux, ces coquilles sont présentes en Corse jusque vers 150-200, voire 300 m (Fig. 6-1).

Il est généralement admis que la limite inférieure du système phytal correspond à une irradiance de 1%. La mesure de cette limite ne peut se faire que par l’extension de microalgues ou algues unicellulaires photosynthétiques (Tett, 1990) ; le cas d’Ostreobium est un bon exemple permettant d’utiliser une espèce benthique. Si on lit souvent que cette limite se situe vers 200 m, il faut rappeler que sa profondeur n’est valable qu’au seul lieu de la mesure, en attestent ses variations bathymétriques en Corse (Fig. 6-1).

13 Aussi nommée zone photique et zone aphotique.
8. Cahiers des stations

Liste des cahiers de stations et des récoltes de brachiopodes : Tableaux 3 à 10.

<table>
<thead>
<tr>
<th>Provence</th>
<th>chapitre 8 : stations</th>
<th>chapitre 9 : cartes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BraProv 0-10</td>
<td>Tableau 3 et Tableau 4</td>
<td>Figures 9-2, 9-3</td>
</tr>
<tr>
<td>IsoBra et DEPROG</td>
<td>Tableau 5</td>
<td>Figures 9-1, 9-2</td>
</tr>
<tr>
<td>Corse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BraCors 1-6</td>
<td>Tableau 6 et Tableau 7</td>
<td>Figures 9-4, 9-5, 9-6, 9-7, 9-8</td>
</tr>
<tr>
<td>BathysMed</td>
<td>Tableau 8 et Tableau 9</td>
<td>Figures 9-4, 9-5, 9-6</td>
</tr>
<tr>
<td>Meditis 2-4</td>
<td>Tableau 10</td>
<td>Figures 9-4, 9-7</td>
</tr>
</tbody>
</table>

Tableau 3 : Campagnes Brapro (CNRS ; chef de mission : Christian C. Emig). Figures 9-2 et 9-3. [Légende en fin de tableau]

<table>
<thead>
<tr>
<th>Campagnes et Stations</th>
<th>Zone</th>
<th>Prof (D - F)</th>
<th>Cap</th>
<th>Distance</th>
<th>Latitude N (D)</th>
<th>Longitude E (D)</th>
<th>Latitude N (F)</th>
<th>Longitude E (F)</th>
<th>Engins</th>
<th>Brachiopoda</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 A 1</td>
<td>0</td>
<td>70</td>
<td>43°07'36</td>
<td>5°32'12</td>
<td>DF</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 A 2</td>
<td>0 160</td>
<td>80</td>
<td>43°06'27</td>
<td>5°32'12</td>
<td>DF</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 A 3</td>
<td>0</td>
<td>0</td>
<td>43°07'24</td>
<td>5°33'30</td>
<td>DF</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 A 4</td>
<td>0 145</td>
<td>0</td>
<td>43°07'03</td>
<td>5°33'42</td>
<td>DF</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 A 5</td>
<td>0 160</td>
<td>45</td>
<td>43°06'30</td>
<td>5°33'36</td>
<td>DF</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 A 6</td>
<td>0 250</td>
<td>220</td>
<td>43°06'42</td>
<td>5°30'12</td>
<td>DF</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 A 1</td>
<td>1 120</td>
<td>0</td>
<td>43°07'27</td>
<td>5°33'24</td>
<td>DF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 A 2</td>
<td>1 240</td>
<td>130</td>
<td>43°06'54</td>
<td>5°33'21</td>
<td>DF-</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 A 3</td>
<td>1 140</td>
<td>100</td>
<td>43°06'45</td>
<td>5°33'36</td>
<td>DF</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 A 4</td>
<td>1 240</td>
<td>?</td>
<td>43°06'39</td>
<td>5°34'21</td>
<td>DF</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 A 5</td>
<td>1 250</td>
<td>240</td>
<td>43°03'18</td>
<td>5°30'18</td>
<td>DF-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 A 6</td>
<td>1 250</td>
<td>280</td>
<td>43°03'18</td>
<td>5°30'18</td>
<td>DF-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 A 7</td>
<td>1 250</td>
<td>?</td>
<td>43°03'12</td>
<td>5°30'21</td>
<td>DF-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 A 8</td>
<td>1 B 220</td>
<td>150</td>
<td>43°01'35</td>
<td>5°41'05</td>
<td>DF-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 A 9</td>
<td>1 B 180</td>
<td>270</td>
<td>43°01'00</td>
<td>5°41'10</td>
<td>DF</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 A 10</td>
<td>1 B 220</td>
<td>140</td>
<td>43°01'20</td>
<td>5°41'20</td>
<td>DF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 A 11</td>
<td>1 B 200</td>
<td>?</td>
<td>43°00'20</td>
<td>5°40'10</td>
<td>DF</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 A 12</td>
<td>1 B 210</td>
<td>230</td>
<td>42°58'10</td>
<td>5°41'10</td>
<td>DF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 A 13</td>
<td>1 B 250</td>
<td>160</td>
<td>42°58'24</td>
<td>5°36'24</td>
<td>DF</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 A 14</td>
<td>1 B 280</td>
<td>155</td>
<td>42°58'48</td>
<td>5°35'42</td>
<td>DF</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 A 15</td>
<td>1 B 250</td>
<td>155</td>
<td>42°59'36</td>
<td>5°34'51</td>
<td>DF</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 TG 16</td>
<td>2 M 345</td>
<td>70</td>
<td>43°01'57</td>
<td>6°38'45</td>
<td>SUBM</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 A 17</td>
<td>3 B 200</td>
<td>140</td>
<td>43°00'18</td>
<td>5°35'06</td>
<td>DF-</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

39
6 CL 74 P 410 375 90 42°56.70 6°07.46 42°56.56 6°07.97 D-
6 CL 75 P 400 310 120 42°56.11 6°08.37 42°56.56 6°08.19 DF-
6 A 76 P 320 350 110 42°55.31 6°09.44 42°55.93 6°09.08 L
6 CL 77 P 280 230 45 42°55.32 6°10.76 42°55.78 6°11.22 DF- B
6 CL 78 P 290 590 45 42°55.35 6°12.57 42°56.16 6°13.41 DF-
6 CL 79 P 400 270 235 42°55.66 6°11.49 42°56.07 6°13.29 L
6 CL 80 P 1200 1100 310 42°54.51 6°07.55 42°54.22 6°09.56 D-
7 A 81 B 130 130 110 43°01.75 5°35.00 D-
7 A 82 B 130 133 320 43°01.60 5°35.10 D B
7 A 83 B 145 140 320 43°01.65 5°34.60 DF B
7 A 84 B 145 140 325 43°01.85 5°34.50 DF B
7 A 85 B 130 135 320 43°02.30 5°33.80 L
7 A 86 B 135 140 320 43°01.95 5°34.40 C-
7 A 87 B 140 140 310 43°01.95 5°34.40 C B
7 A 88 B 190 180 115 43°00.10 5°34.15 D B
7 A 89 B 200 195 305 42°59.10 5°33.85 DF B
7 A 90 B 190 210 310 42°59.10 5°33.65 L
7 A 91 B 195 200 290 42°59.10 5°33.40 C- B
7 A 92 B 245 250 42°59.40 5°33.25 D-
7 A 93 B 245 250 42°59.70 5°32.90 D-
7 A 94 B 250 260 42°59.65 5°33.15 DF B
7 A 95 B 245 280 42°59.60 5°33.05 L
7 A 96 P 150 145 325 42°57.20 6°08.25 D
7 A 97 P 155 145 42°57.20 6°08.25 DF B
7 A 98 P 150 140 42°57.20 6°07.50 L
7 A 99 P 170 220 310 42°51.25 6°07.10 D
7 A 100 P 195 210 120 42°57.20 6°07.30 DF- B
7 A 101 P 220 190 115 42°57.15 6°08.10 L
7 A 102 P 143 138 100 42°58.00 6°07.90 DF B
7 A 103 P 128 130 340 42°58.40 6°07.60 DF B
7 A 104 P 260 220 300 42°57.05 6°08.10 DF B
7 A 105 P 280 260 100 42°57.05 6°07.70 D
7 A 106 P 240 260 300 42°57.10 6°07.30 L
7 A 107 P 125 120 140 42°57.30 6°09.40 DF B
7 A 108 P 150 140 320 42°57.00 6°08.90 D
8 TG 109 B 420 150 0 42°58'43" 5°34'30" 43°01'13" 5°34'28" SUBM B
9 K 110 B 445 469 310 0.20 42°59.00 5°33.00 42°59.00 5°32.80 DF
9 K 111 B 537 546 95 0.18 42°58.83 5°33.54 42°58.78 5°33.78 D-
9 K 112 B 439 463 275 0.12 42°59.06 5°32.98 42°59.08 5°32.82 D-
9 K 113 B 473 475 100 0.69 42°58.88 5°33.45 42°58.63 5°34.37 L
9 K 114 B 362 378 300 0.15 42°59.04 5°34.06 42°59.06 5°33.88 DF
9 K 115 B 353 358 130 0.20 42°58.48 5°35.15 42°58.30 5°35.41 D
9 K 116 B 352 42°58.28 5°35.57 B
9 K 117 B 300 302 260 0.19 42°59.23 5°34.58 42°59.41 5°34.34 D
9 K 118 B 302 42°59.41 5°34.34 B B
9 K 119 B 270 259 120 0.61 42°59.11 5°34.97 42°58.69 5°35.74 L
9 K 120 B 151 149 310 0.16 43°00.18 5°34.71 43°00.53 5°34.58 DF
9 K 121 B 42°59.70 5°34.49 B
9 K 122 B 147 42°59.45 5°34.91 42°59.64 5°34.9.1 L
9 K 123 B 148 147 310 0.20 43°00.05 5°35.20 43°00.36 5°34.97 D
9 K 124 B 147 149 50.0 42°59.48 5°36.06 C B
9 K 125 B 155 160 290 0.82 42°59.10 5°35.60 43°00.14 5°34.59 C B
9 K 126 B 166 43°00.49 5°33.80 B
9 K 127 B 191 189 290 0.21 43°00.54 5°33.37 43°00.71 5°33.12 D B
9 K 128 B 192 43°00.59 5°33.22 B
9 K 129 B 188 170 130 0.76 43°00.35 5°33.90 42°59.91 5°35.00 L-
<table>
<thead>
<tr>
<th>N°</th>
<th>K 130</th>
<th>B 118 119 270 0.15</th>
<th>43°02.10 5°34.80 43°02.29 5°34.44</th>
<th>DF</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>K 131</td>
<td>B 115 120 0 0.16</td>
<td>43°03.00 5°33.80 43°03.32 5°33.83</td>
<td>DF</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>K 132</td>
<td>P 170 193 90 0.17</td>
<td>42°57.22 6°08.00 42°56.94 6°05.18</td>
<td>D-</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>K 133</td>
<td>P 200</td>
<td>42°57.21 6°08.03</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K 134</td>
<td>P 190 200 0.17</td>
<td>42°57.30 6°06.90 42°57.22 6°06.62</td>
<td>DF</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>K 135</td>
<td>P 133 126 0.14</td>
<td>42°58.16 6°08.11 42°58.11 6°07.49</td>
<td>DF-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K 136</td>
<td>P 132</td>
<td>42°57.86 6°08.41</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K 137</td>
<td>P 131 130 315 0.14</td>
<td>42°58.04 6°08.06 42°58.16 6°07.89</td>
<td>DF</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>K 138</td>
<td>P 131 129 127 0.76</td>
<td>42°58.14 6°07.94 42°57.67 6°08.56</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K 139</td>
<td>P 302 294 280 0.32</td>
<td>42°57.00 6°07.84 42°57.05 6°07.31</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K 140</td>
<td>P 180 183 270 0.29</td>
<td>42°57.27 6°07.22 42°57.24 6°06.84</td>
<td>SF</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>K 141</td>
<td>P 183</td>
<td>42°57.24 6°06.84</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K 142</td>
<td>P 387 395 90 0.15</td>
<td>42°56.68 6°07.88 42°56.61 6°07.94</td>
<td>D-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K 143</td>
<td>P 395</td>
<td>42°56.61 6°07.94</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K 144</td>
<td>P 415 419 140 0.18</td>
<td>42°56.50 6°08.00 42°56.36 6°08.10</td>
<td>DF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K 145</td>
<td>P 393 457 320 0.77</td>
<td>42°56.50 6°07.50 42°56.75 6°06.96</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K 146</td>
<td>P 100 99 350 0.21</td>
<td>42°59.00 6°08.73 42°59.29 6°08.52</td>
<td>DF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K 147</td>
<td>P 99</td>
<td>42°59.26 6°08.47</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K 148</td>
<td>P 129 130 130 0.53</td>
<td>42°58.85 6°07.00 42°58.41 6°07.55</td>
<td>C</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>TG 149</td>
<td>P 600 80 20</td>
<td>42°56.000 6°07.20 42°59.40 6°09.20</td>
<td>SUBM</td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>

BRAPROV 0 : mars 1983 (N/O Antedon)
BRAPROV 1 : 28 février au 2 mars 1984 (N/O Antedon)
BRAPROV 2 : 27 janvier 1986 (BISM Triton & SMI Griffon)
BRAPROV 3 : 11 au 14 décembre 1986 (N/O Antedon)
BRAPROV 4 : 12 au 16 janvier 1987 (N/O Catherine-Laurence & ROV Modea)
BRAPROV 5 : 4 au 6 mars 1987 (N/O Antedon)
BRAPROV 6 : 30 mars au 3 avril 1987 (N/O Catherine-Laurence)
BRAPROV 7 : 1 au 5 juin 1987 (N/O Antedon)
BRAPROV 8 : 22 octobre 1987 (BISM Triton & SMI Griffon)
BRAPROV 9 : 16 au 25 novembre 1987 (N/O Korotneff)
BRAPROV 10 : 13 octobre 1989 (BISM Triton & SMI Griffon)

Engins de prélèvement : B = benne Shipeck ; C = petit chalut à perche (2m de large) ; D = drague Charcot-Picard avec caïcon (toile de jute) ; DF = drague Charcot-Picard (sans toile) avec un filet de 10mm de maille, protégé par un filet de 10 à grosse maille ; L = luge ; ROV = remotely operated vehicle ou véhicule sous-marin télé guidé ; SUBM = submersible. - : indique un prélèvement incomplet ou vide (avarie).

Dans certaines stations, des comptages ont été effectués sur les Gryphus selon la couleur de la coquille blanche ou verte colonisées par l’algue Ostreodium. Pour la légende complète : voir Tableau 3.
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>DF</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A 13</td>
<td>B 250</td>
<td>160</td>
<td>DF</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>A 14</td>
<td>B 280</td>
<td>155</td>
<td>DF</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>A 15</td>
<td>B 250</td>
<td>155</td>
<td>DF</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>TG 16</td>
<td>M 345</td>
<td>70</td>
<td>SUBM</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A 17</td>
<td>B 200</td>
<td>140</td>
<td>DF</td>
<td>- 20</td>
<td>/0</td>
</tr>
<tr>
<td>3</td>
<td>A 18</td>
<td>B 200</td>
<td>160</td>
<td>DF</td>
<td>4</td>
<td>/0</td>
</tr>
<tr>
<td>3</td>
<td>A 19</td>
<td>B 160</td>
<td>180</td>
<td>DF</td>
<td>49</td>
<td>40/9</td>
</tr>
<tr>
<td>3</td>
<td>A 20</td>
<td>M 110</td>
<td>105</td>
<td>DF</td>
<td>38</td>
<td>6/32</td>
</tr>
<tr>
<td>3</td>
<td>A 22</td>
<td>M 120</td>
<td>130</td>
<td>DF</td>
<td>34</td>
<td>19/15</td>
</tr>
<tr>
<td>3</td>
<td>A 24</td>
<td>M 120</td>
<td>160</td>
<td>DF</td>
<td>56</td>
<td>44/12</td>
</tr>
<tr>
<td>3</td>
<td>A 25</td>
<td>M 245</td>
<td>235</td>
<td>DF</td>
<td>- 7</td>
<td>/0</td>
</tr>
<tr>
<td>3</td>
<td>A 26</td>
<td>M 245</td>
<td>210</td>
<td>D-</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>A 27</td>
<td>M 200</td>
<td>120</td>
<td>DF</td>
<td>- 10</td>
<td>8/2</td>
</tr>
<tr>
<td>3</td>
<td>A 29</td>
<td>M 180</td>
<td>120</td>
<td>DF</td>
<td>140</td>
<td>/0</td>
</tr>
<tr>
<td>3</td>
<td>A 30</td>
<td>PC 220</td>
<td>160</td>
<td>DF</td>
<td>10</td>
<td>/0</td>
</tr>
<tr>
<td>3</td>
<td>A 32</td>
<td>PC 120</td>
<td>110</td>
<td>DF</td>
<td>2</td>
<td>/0</td>
</tr>
<tr>
<td>3</td>
<td>A 35</td>
<td>B 180</td>
<td>260</td>
<td>DF</td>
<td>- 5</td>
<td>/0</td>
</tr>
<tr>
<td>3</td>
<td>A 36</td>
<td>B 175</td>
<td>180</td>
<td>DF</td>
<td>10</td>
<td>/0</td>
</tr>
<tr>
<td>3</td>
<td>A 39</td>
<td>B 180</td>
<td>155</td>
<td>DF</td>
<td>137</td>
<td>/0</td>
</tr>
<tr>
<td>5</td>
<td>A 45</td>
<td>B 140</td>
<td>140</td>
<td>DF</td>
<td>24</td>
<td>/0</td>
</tr>
<tr>
<td>5</td>
<td>A 46</td>
<td>B 150</td>
<td>140</td>
<td>DF</td>
<td>6</td>
<td>/0</td>
</tr>
<tr>
<td>5</td>
<td>A 48</td>
<td>B 130</td>
<td>125</td>
<td>D</td>
<td>1</td>
<td>/0</td>
</tr>
<tr>
<td>5</td>
<td>A 49</td>
<td>B 130</td>
<td>125</td>
<td>L</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>A 52</td>
<td>B 155</td>
<td>160</td>
<td>C</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>A 54</td>
<td>B 160</td>
<td>160</td>
<td>D</td>
<td>1</td>
<td>/0</td>
</tr>
<tr>
<td>5</td>
<td>A 55</td>
<td>B 250</td>
<td>260</td>
<td>D</td>
<td>3</td>
<td>/0</td>
</tr>
<tr>
<td>5</td>
<td>A 57</td>
<td>B 240</td>
<td>230</td>
<td>C-</td>
<td>68</td>
<td>/0</td>
</tr>
<tr>
<td>6</td>
<td>A 59</td>
<td>PC 120</td>
<td>96</td>
<td>DF</td>
<td>5</td>
<td>/0</td>
</tr>
<tr>
<td>6</td>
<td>A 60</td>
<td>PC 170</td>
<td>140</td>
<td>D-</td>
<td>20</td>
<td>/0</td>
</tr>
<tr>
<td>6</td>
<td>A 61</td>
<td>PC 250</td>
<td>130</td>
<td>DF</td>
<td>5</td>
<td>/0</td>
</tr>
<tr>
<td>6</td>
<td>A 62</td>
<td>PC 150</td>
<td>160</td>
<td>DF</td>
<td>20</td>
<td>/0</td>
</tr>
<tr>
<td>6</td>
<td>A 66</td>
<td>P 130</td>
<td>129</td>
<td>DF</td>
<td>70</td>
<td>/0</td>
</tr>
<tr>
<td>6</td>
<td>A 67</td>
<td>P 132</td>
<td>132</td>
<td>DF</td>
<td>250</td>
<td>/0</td>
</tr>
<tr>
<td>6</td>
<td>A 71</td>
<td>P 125</td>
<td>132</td>
<td>C</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>A 72</td>
<td>P 230</td>
<td>212</td>
<td>DF</td>
<td>10</td>
<td>/0</td>
</tr>
<tr>
<td>6</td>
<td>A 77</td>
<td>P 280</td>
<td>230</td>
<td>DF-</td>
<td>2</td>
<td>/0</td>
</tr>
<tr>
<td>7</td>
<td>A 82</td>
<td>B 130</td>
<td>133</td>
<td>D</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>A 83</td>
<td>B 145</td>
<td>140</td>
<td>DF</td>
<td>22</td>
<td>/0</td>
</tr>
<tr>
<td>7</td>
<td>A 84</td>
<td>B 145</td>
<td>140</td>
<td>DF</td>
<td>85</td>
<td>83/2</td>
</tr>
<tr>
<td>7</td>
<td>A 87</td>
<td>B 140</td>
<td>140</td>
<td>C</td>
<td>>1000</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>A 88</td>
<td>B 190</td>
<td>180</td>
<td>D</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>A 89</td>
<td>B 200</td>
<td>195</td>
<td>DF</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>A 91</td>
<td>B 195</td>
<td>200</td>
<td>C-</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>A 94</td>
<td>B 250</td>
<td>260</td>
<td>DF</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>A 97</td>
<td>P 155</td>
<td>145</td>
<td>DF</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>A 100</td>
<td>P 195</td>
<td>210</td>
<td>DF-</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>A 102</td>
<td>P 143</td>
<td>138</td>
<td>DF</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>A 103</td>
<td>P 128</td>
<td>130</td>
<td>DF</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>A 104</td>
<td>P 260</td>
<td>220</td>
<td>DF</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>A 107</td>
<td>P 125</td>
<td>120</td>
<td>DF</td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[D] sont les données lors de la mise à l'eau de l'engin ; [F] au moment de la remontée de l'engin. Cap du traict et le nombre de *Gryphus* récoltés. Seules les stations avec brachiopodes sont listées.

<table>
<thead>
<tr>
<th>Campagne et Stations</th>
<th>Profondeur (D - F)</th>
<th>Latitude N (D)</th>
<th>Longitude E (D)</th>
<th>Latitude N (F)</th>
<th>Longitude E (F)</th>
<th>cap en °</th>
<th>Gryphus</th>
</tr>
</thead>
<tbody>
<tr>
<td>IsoBra 1B 2 DF</td>
<td>128 129</td>
<td>43°02'.54</td>
<td>5°33'.26</td>
<td>43°02'.15</td>
<td>5°33'.71</td>
<td>275</td>
<td>3</td>
</tr>
<tr>
<td>IsoBra 1B 4 DF</td>
<td>156 157</td>
<td>43°01'.11</td>
<td>5°32'.67</td>
<td>43°01'.44</td>
<td>5°31'.44</td>
<td>280</td>
<td>200</td>
</tr>
<tr>
<td>IsoBra 1B 6 DF</td>
<td>162 155</td>
<td>43°01'.85</td>
<td>5°30'.55</td>
<td>43°02'.34</td>
<td>5°30'.38</td>
<td>280</td>
<td>200</td>
</tr>
<tr>
<td>IsoBra 1B 9 DF</td>
<td>155 154</td>
<td>43°02'.29</td>
<td>5°30'.28</td>
<td>43°02'.01</td>
<td>5°30'.69</td>
<td>150</td>
<td>180</td>
</tr>
<tr>
<td>DEPROG D-2</td>
<td>986 1030</td>
<td>42°43'.57</td>
<td>4°46'.99</td>
<td>42°42'.55</td>
<td>4°46'.60</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>DEPROG D-3</td>
<td>1129 1193</td>
<td>42°44'.57</td>
<td>4°29'.47</td>
<td>42°43'.90</td>
<td>4°29'.50</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>DEPROG D-4</td>
<td>1096 1179</td>
<td>42°34'.68</td>
<td>4°07'.40</td>
<td>42°33'.37</td>
<td>4°08'.19</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>DEPROG D-5</td>
<td>1136 1157</td>
<td>42°28'.52</td>
<td>4°05'.74</td>
<td>42°27'.66</td>
<td>4°07'.00</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>DEPROG D-6</td>
<td>1680 1630</td>
<td>42°20'.73</td>
<td>3°58'.93</td>
<td>42°19'.92</td>
<td>4°00'.45</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>DEPROG D-14</td>
<td>1153 1275</td>
<td>42°15'.67</td>
<td>3°42'.90</td>
<td>42°14'.27</td>
<td>3°44'.25</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>DEPROG D-17</td>
<td>744 725</td>
<td>42°29'.60</td>
<td>3°40'.34</td>
<td>42°29'.30</td>
<td>3°40'.85</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 6 : Campagnes BraCors (CNRS ; chef de mission : Christian C. Emig), Figures 9-4, 9-5, 9-6, 9-7 et 9-8. [Légende en fin de tableau]<
<table>
<thead>
<tr>
<th>CL</th>
<th>Annulé</th>
<th>présence de filets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CL 46</td>
<td>149</td>
<td>42°40'46</td>
</tr>
<tr>
<td>3 CL 46bis</td>
<td>280 220</td>
<td>8°47'00</td>
</tr>
<tr>
<td>3 CL 46b</td>
<td>280 220</td>
<td>42°41'18</td>
</tr>
<tr>
<td>4 CL 46</td>
<td>150 135</td>
<td>8°46'49</td>
</tr>
<tr>
<td>1 CL 47</td>
<td>170 143</td>
<td>42°47'08</td>
</tr>
<tr>
<td>1 CL 47</td>
<td>143</td>
<td>42°40'47</td>
</tr>
<tr>
<td>1 CL 48</td>
<td>??</td>
<td>42°41'50</td>
</tr>
<tr>
<td>1 CL 49</td>
<td>?150 130</td>
<td>270</td>
</tr>
<tr>
<td>1 CL 50</td>
<td>135 120</td>
<td>42°46'33</td>
</tr>
<tr>
<td>1 CL 51</td>
<td>??</td>
<td>245 42°43'53</td>
</tr>
<tr>
<td>1 CL 52</td>
<td>160 115</td>
<td>42°45'37</td>
</tr>
<tr>
<td>1 CL 52-1</td>
<td>??</td>
<td>250 42°45'36</td>
</tr>
<tr>
<td>1 CL 53</td>
<td>160 115</td>
<td>42°45'28</td>
</tr>
<tr>
<td>1 CL 54</td>
<td>120 60</td>
<td>42°45'30</td>
</tr>
<tr>
<td>1 CL 55</td>
<td>150 115</td>
<td>42°45'40</td>
</tr>
<tr>
<td>1 CL 56</td>
<td>140 120</td>
<td>42°45'33</td>
</tr>
<tr>
<td>1 CL 57</td>
<td>??</td>
<td>150 245 42°45'44</td>
</tr>
<tr>
<td>1 CL 58</td>
<td>??</td>
<td>245 42°45'42</td>
</tr>
<tr>
<td>1 CL 59</td>
<td>??</td>
<td>245 42°45'48</td>
</tr>
<tr>
<td>1 CL 59'</td>
<td>180 190</td>
<td>42°45'45</td>
</tr>
<tr>
<td>1 CL 60</td>
<td>??</td>
<td>200 42°46'00</td>
</tr>
<tr>
<td>1 CL 61</td>
<td>140 105</td>
<td>42°45'25</td>
</tr>
<tr>
<td>1 CL 62</td>
<td>140 110</td>
<td>42°43'55</td>
</tr>
<tr>
<td>1 CL 63</td>
<td>150 105</td>
<td>42°47'27</td>
</tr>
<tr>
<td>1 CL 64</td>
<td>150 77</td>
<td>42°47'53</td>
</tr>
<tr>
<td>1 CL 65</td>
<td>140 110</td>
<td>42°50'03</td>
</tr>
<tr>
<td>1 CL 66</td>
<td>??</td>
<td>125 42°51'53</td>
</tr>
<tr>
<td>1 CL 67</td>
<td>130 85</td>
<td>42°54'08</td>
</tr>
<tr>
<td>1 CL 68</td>
<td>115 95</td>
<td>42°54'03</td>
</tr>
<tr>
<td>1 CL 69</td>
<td>??</td>
<td>180 42°55'17</td>
</tr>
<tr>
<td>1 CL 70</td>
<td>210 130</td>
<td>42°57'04</td>
</tr>
<tr>
<td>1 CL 71</td>
<td>??</td>
<td>210 43°00'54</td>
</tr>
<tr>
<td>1 CL 72</td>
<td>190 160</td>
<td>43°00'45</td>
</tr>
<tr>
<td>1 CL 73</td>
<td>125 90</td>
<td>42°48'05</td>
</tr>
<tr>
<td>1 CL 74</td>
<td>110 170</td>
<td>42°48'08</td>
</tr>
<tr>
<td>1 CL 75</td>
<td>??</td>
<td>180 42°41'36</td>
</tr>
<tr>
<td>1 CL 76</td>
<td>??</td>
<td>155 42°41'30</td>
</tr>
<tr>
<td>1 CL 77</td>
<td>??</td>
<td>150 42°41'25</td>
</tr>
<tr>
<td>1 CL 78</td>
<td>??</td>
<td>180 42°41'25</td>
</tr>
<tr>
<td>1 CL 79</td>
<td>150 95</td>
<td>41°38'47</td>
</tr>
<tr>
<td>1 CL 80</td>
<td>150 140</td>
<td>41°39'03</td>
</tr>
<tr>
<td>1 CL 81</td>
<td>150</td>
<td>41°38'50</td>
</tr>
<tr>
<td>1 CL 82</td>
<td>145 115</td>
<td>41°38'54</td>
</tr>
<tr>
<td>1 CL 83</td>
<td>123 97</td>
<td>41°38'36</td>
</tr>
<tr>
<td>1 CL 84</td>
<td>100 58</td>
<td>41°38'27</td>
</tr>
</tbody>
</table>

B : Bonne précision de filets
D : Place de filets
DF : Mercredi
| | 2 CL 85 | 2 CL 86 | 2 CL 87 | 2 CL 87bis | 2 CL 88 | 2 CL 88bis | 2 CL 89 | 2 CL 90 | 2 CL 91 | 2 CL 92 | 2 CL 93 | 2 CL 94 | 2 CL 95 | 2 CL 96 | 2 CL 97 | 2 CL 98 | 2 CL 99 | 2 CL 100 | 2 CL 101 | 2 CL 102 | 2 CL 103 | 2 CL 104 | 2 CL 105 | 2 CL 106 | 2 CL 107 | 2 CL 108 | 2 CL 109 | 2 CL 110 | 2 CL 111 | 2 CL 112 | 2 CL 113 | 2 CL 114 | 2 CL 115 | 2 CL 116 | 2 CL 117 | 2 CL 118 | 2 CL 119 | 2 CL 120 | 2 CL 121 | 2 CL 122 | 2 CL 123 | 2 CL 124 | 2 CL 125 | 2 CL 126 | 2 CL 127 | 6 CL 128 | 6 CL 129 |
|----|---------|---------|---------|------------|---------|------------|
| | 150 122 | 125 110 | 128 110 | 110 | 100 87 | 88 | 150 122 | 105 68 | 142 40 | 127 ? | 110 118 | 130 130 | 120 | 150 160 | 150 137 | 160 145 | 145 | 145 145 | 155 142 | 117 113 | 124 125 | 146 140 | 140 | 146 154 | 148 154 | 145 | 150 120 | 150 117 | 150 100 | 150 145 | 150 | 155 130 | 128 127 | 146 | 180 150 | 150 119 | 116 | 155 | 123 180 | 150 | 150 113 | 69 67 | 150 130 | 150 156 |

<table>
<thead>
<tr>
<th>Station</th>
<th>Campagne</th>
<th>Engins</th>
<th>Prof. [m]</th>
<th>Dist. [milles]</th>
<th>Gryphus</th>
<th>Gryphus b / v</th>
<th>Terebratulina</th>
<th>Megerlia</th>
<th>Megathiris</th>
<th>Novocrania</th>
<th>Platidia</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL 1</td>
<td>1983 -1</td>
<td>D</td>
<td>125</td>
<td>125</td>
<td>.35</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL 1</td>
<td>1983 -1</td>
<td>C</td>
<td>125</td>
<td>125</td>
<td>.20</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL 1/2</td>
<td>1984 -3</td>
<td>DF</td>
<td>146</td>
<td>150</td>
<td>.40</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BRACORS 1 : 31 mai au 9 juin 1983 (N/O Catherine-Laurence)
BRACORS 2 : 9 au 15 avril 1984 (N/O Catherine-Laurence)
BRACORS 3 : 2 au 6 juillet 1984 (N/O Catherine-Laurence)
BRACORS 4 : 4 au 8 juillet 1985 (N/O Korotneff)
BRACORS 5 : 4 au 22 novembre 1985 (N/O Catherine-Laurence)
BRACORS 6 : 19 au 23 janvier 1987 (N/O Catherine-Laurence)

Engins de prélèvement : B = benne Shipeck ; C = petit chalut à perche (2m de large) ; D = drague Charcot-Picard avec caisson (toile de jute) ; DF = drague Charcot-Picard (sans caisson) avec un filet de 10mm de maille, protégé par un filet de 10 à grosse maille ; L = luge. - : indique un prélèvement incomplet ou vide (avarié).
<table>
<thead>
<tr>
<th>CL</th>
<th>Year</th>
<th>Team</th>
<th>Speed</th>
<th>Position</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1983-1984</td>
<td>C</td>
<td>125/135</td>
<td>40</td>
<td>40/10/1</td>
</tr>
<tr>
<td>2-85</td>
<td>1985-1986</td>
<td>DF</td>
<td>125/130</td>
<td>61</td>
<td>28/33</td>
</tr>
<tr>
<td>3</td>
<td>1983-1984</td>
<td>C</td>
<td>130/130</td>
<td>7</td>
<td>8/1</td>
</tr>
<tr>
<td>4</td>
<td>1983-1984</td>
<td>C</td>
<td>138/130</td>
<td>2</td>
<td>2/12/1</td>
</tr>
<tr>
<td>6</td>
<td>1983-1984</td>
<td>C</td>
<td>140/135</td>
<td>.22</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>1983-1984</td>
<td>C</td>
<td>130/130</td>
<td>.20</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>1983-1984</td>
<td>C</td>
<td>130/135</td>
<td>.39</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>1983-1984</td>
<td>C</td>
<td>130/110</td>
<td>.50</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>1983-1984</td>
<td>DF</td>
<td>125/105</td>
<td>.24</td>
<td>20</td>
</tr>
<tr>
<td>13</td>
<td>1983-1984</td>
<td>DF</td>
<td>120/100</td>
<td>.34</td>
<td>40</td>
</tr>
<tr>
<td>13-1</td>
<td>1985-1986</td>
<td>DF</td>
<td>140/140</td>
<td>219</td>
<td>194/25</td>
</tr>
<tr>
<td>13-2</td>
<td>1985-1986</td>
<td>DF</td>
<td>150/160</td>
<td>135</td>
<td>130/5</td>
</tr>
<tr>
<td>13-6</td>
<td>1985-1986</td>
<td>DF</td>
<td>125/125</td>
<td>61</td>
<td>13/48</td>
</tr>
<tr>
<td>13-11</td>
<td>1985-1986</td>
<td>DF</td>
<td>120/120</td>
<td>24</td>
<td>7/17</td>
</tr>
<tr>
<td>13-13</td>
<td>1985-1986</td>
<td>DF</td>
<td>140/140</td>
<td>.39</td>
<td>200</td>
</tr>
<tr>
<td>13-14</td>
<td>1985-1986</td>
<td>DF</td>
<td>135/135</td>
<td>.43</td>
<td>264</td>
</tr>
<tr>
<td>13-15</td>
<td>1985-1986</td>
<td>DF</td>
<td>117</td>
<td>.27</td>
<td>10/10/10</td>
</tr>
<tr>
<td>13-16</td>
<td>1985-1986</td>
<td>DF</td>
<td>128/115</td>
<td>.79</td>
<td>40/20/20</td>
</tr>
<tr>
<td>13-17</td>
<td>1985-1986</td>
<td>DF</td>
<td>125/125</td>
<td>.27</td>
<td>10</td>
</tr>
<tr>
<td>13-18</td>
<td>1985-1986</td>
<td>DF</td>
<td>107/98</td>
<td>.32</td>
<td>10</td>
</tr>
<tr>
<td>13-19</td>
<td>1985-1986</td>
<td>DF</td>
<td>135/127</td>
<td>.34</td>
<td>372</td>
</tr>
<tr>
<td>13-20</td>
<td>1985-1986</td>
<td>DF</td>
<td>123/110</td>
<td>.36</td>
<td>10/10/10/10</td>
</tr>
<tr>
<td>13-21</td>
<td>1985-1986</td>
<td>DF</td>
<td>115/105</td>
<td>.18</td>
<td>55/104/76/30</td>
</tr>
<tr>
<td>14</td>
<td>1983-1984</td>
<td>DF</td>
<td>140/85</td>
<td>.48</td>
<td>20</td>
</tr>
<tr>
<td>15</td>
<td>1983-1984</td>
<td>DF</td>
<td>100/95</td>
<td>.27</td>
<td>10</td>
</tr>
<tr>
<td>15-16</td>
<td>1984-1985</td>
<td>DF</td>
<td>110/98</td>
<td>.39</td>
<td>10</td>
</tr>
<tr>
<td>15bis</td>
<td>1984-1985</td>
<td>DF</td>
<td>150/97</td>
<td>.64</td>
<td>20</td>
</tr>
<tr>
<td>15b2</td>
<td>1984-1985</td>
<td>DF</td>
<td>155/139</td>
<td>.40</td>
<td>10</td>
</tr>
<tr>
<td>15b3</td>
<td>1984-1985</td>
<td>DF</td>
<td>160/143</td>
<td>.25</td>
<td>2</td>
</tr>
<tr>
<td>15b4</td>
<td>1984-1985</td>
<td>DF</td>
<td>160/135</td>
<td>.34</td>
<td>13/24/15</td>
</tr>
<tr>
<td>15-4</td>
<td>1984-1985</td>
<td>DF</td>
<td>110/110</td>
<td>.32</td>
<td>20/20/10</td>
</tr>
<tr>
<td>16</td>
<td>1983-1984</td>
<td>C</td>
<td>140/135</td>
<td>.53</td>
<td>40</td>
</tr>
<tr>
<td>17</td>
<td>1983-1984</td>
<td>C</td>
<td>130/140</td>
<td>.50</td>
<td>40</td>
</tr>
<tr>
<td>18</td>
<td>1983-1984</td>
<td>C</td>
<td>130/135</td>
<td>7.02</td>
<td>30</td>
</tr>
</tbody>
</table>

51
<table>
<thead>
<tr>
<th>CL</th>
<th>Year</th>
<th>DF</th>
<th>Length</th>
<th>Width</th>
<th>Wing</th>
<th>Fins</th>
<th>Wing C</th>
<th>Sails</th>
<th>Max Wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL</td>
<td>21</td>
<td>1983-1</td>
<td>9390</td>
<td>32</td>
<td>24</td>
<td>24</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>21</td>
<td>1984-1</td>
<td>105105</td>
<td>.23</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>22</td>
<td>1983-1</td>
<td>116125</td>
<td>.41</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>23</td>
<td>1983-1</td>
<td>120130</td>
<td>.44</td>
<td>100</td>
<td>1</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>25</td>
<td>1983-1</td>
<td>123128</td>
<td>.39</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>26</td>
<td>1983-1</td>
<td>140145</td>
<td>.35</td>
<td>20</td>
<td>40</td>
<td>20</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CL</td>
<td>26</td>
<td>1984-1</td>
<td>150150</td>
<td>.42</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>26</td>
<td>1985-1</td>
<td>135140</td>
<td>84</td>
<td>68/16</td>
<td>68</td>
<td>16</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>26-1</td>
<td>1985-4</td>
<td>155160</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>27</td>
<td>1983-1</td>
<td>165145</td>
<td>.43</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>30</td>
<td>1983-1</td>
<td>300250</td>
<td>.52</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>31</td>
<td>1983-1</td>
<td>200120</td>
<td>.24</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>CL</td>
<td>34</td>
<td>1983-1</td>
<td>160140</td>
<td>.32</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>41</td>
<td>1984-3</td>
<td>170180</td>
<td>.51</td>
<td>9</td>
<td>100</td>
<td>9</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>35</td>
<td>1983-1</td>
<td>105125</td>
<td>.37</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>35-1</td>
<td>1984-1</td>
<td>150150</td>
<td>.69</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>38</td>
<td>1983-1</td>
<td>117120</td>
<td>.38</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>39</td>
<td>1983-1</td>
<td>220180</td>
<td>.24</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>40</td>
<td>1983-1</td>
<td>125125</td>
<td>.43</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>41</td>
<td>1983-1</td>
<td>135123</td>
<td>.60</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>42</td>
<td>1983-1</td>
<td>145230</td>
<td>.66</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>43</td>
<td>1983-1</td>
<td>7180136</td>
<td>.35</td>
<td>23</td>
<td>7</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>46</td>
<td>1983-1</td>
<td>170150</td>
<td>.45</td>
<td>100</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>46</td>
<td>1985-1</td>
<td>150135</td>
<td>158</td>
<td>20/138</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>47</td>
<td>1983-1</td>
<td>170143</td>
<td>.64</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>49</td>
<td>1983-1</td>
<td>150130</td>
<td>.25</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>50</td>
<td>1983-1</td>
<td>135120</td>
<td>.29</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>52</td>
<td>1983-1</td>
<td>160115</td>
<td>.28</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>53</td>
<td>1983-1</td>
<td>160115</td>
<td>.10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>59</td>
<td>1983-1</td>
<td>180190</td>
<td>.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>60</td>
<td>1983-1</td>
<td>200180</td>
<td>.35</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>61</td>
<td>1983-1</td>
<td>140105</td>
<td>.25</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>63</td>
<td>1983-1</td>
<td>150105</td>
<td>.20</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>66</td>
<td>1983-1</td>
<td>200160</td>
<td>.20</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>1983-1</td>
<td>DF</td>
<td>115 95</td>
<td>.24</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>--------</td>
<td>----</td>
<td>--------</td>
<td>-----</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>1983-1</td>
<td>DF</td>
<td>120 130</td>
<td>.24</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>1983-1</td>
<td>DF</td>
<td>190 160</td>
<td>.14</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>1983-1</td>
<td>DF</td>
<td>125 90</td>
<td>.25</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>1983-1</td>
<td>DF</td>
<td>110 170</td>
<td>.15</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>1983-3</td>
<td>DF</td>
<td>120 143</td>
<td>.37</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>1984-3</td>
<td>DF</td>
<td>150 110</td>
<td>.51</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>1984-3</td>
<td>DF</td>
<td>150 90</td>
<td>.16</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>1984-3</td>
<td>DF</td>
<td>200 180</td>
<td>.23</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>1984-3</td>
<td>DF</td>
<td>190 160</td>
<td>.29</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>1984-3</td>
<td>DF</td>
<td>150 140</td>
<td>.43</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>1984-3</td>
<td>DF</td>
<td>123 97</td>
<td>.14</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>1984-2</td>
<td>DF</td>
<td>150 122</td>
<td>.35</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>1984-2</td>
<td>DF</td>
<td>128 110</td>
<td>.25</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>1984-2</td>
<td>DF</td>
<td>100 87</td>
<td>.13</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>1984-2</td>
<td>DF</td>
<td>142 7</td>
<td>.39</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>1984-2</td>
<td>DF</td>
<td>160 150</td>
<td>.26</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>1984-2</td>
<td>DF</td>
<td>150 137</td>
<td>.43</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>1984-2</td>
<td>DF</td>
<td>160 145</td>
<td>.57</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>1984-2</td>
<td>DF</td>
<td>145 145</td>
<td>.10</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>1984-2</td>
<td>DF</td>
<td>145 145</td>
<td>.54</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>1984-2</td>
<td>DF</td>
<td>155 142</td>
<td>.43</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>1984-2</td>
<td>DF</td>
<td>124 125</td>
<td>.44</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>1984-2</td>
<td>DF</td>
<td>146 140</td>
<td>.46</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>1984-2</td>
<td>DF</td>
<td>148 154</td>
<td>.50</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>1984-2</td>
<td>DF</td>
<td>150 120</td>
<td>.13</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>1984-2</td>
<td>DF</td>
<td>155 130</td>
<td>.42</td>
<td><100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>1984-2</td>
<td>DF</td>
<td>150 127</td>
<td>.59</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>1984-2</td>
<td>DF</td>
<td>200 150</td>
<td>.14</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>1984-2</td>
<td>DF</td>
<td>135 117</td>
<td>.25</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>1984-2</td>
<td>DF</td>
<td>150 119</td>
<td>.31</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>1984-2</td>
<td>DF</td>
<td>155 137</td>
<td>.57</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>1984-2</td>
<td>DF</td>
<td>123 150</td>
<td>.25</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>1984-2</td>
<td>DF</td>
<td>150 130</td>
<td>.53</td>
<td>11/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>1984-2</td>
<td>DF</td>
<td>132 132</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>1984 -2</td>
<td>DF</td>
<td>.43</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>1984 -2</td>
<td>DF</td>
<td>.43</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>1984 -2</td>
<td>DF</td>
<td>.46</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>1987 -6</td>
<td>DF</td>
<td>.31</td>
<td>218</td>
<td>210 / 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>1987 -6</td>
<td>DF</td>
<td>.34</td>
<td>296</td>
<td>296 / 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>1987 -6</td>
<td>DF</td>
<td>.35</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>1987 -6</td>
<td>DF</td>
<td>.25</td>
<td>69</td>
<td>69 / 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>1987 -6</td>
<td>DF</td>
<td>.24</td>
<td>8</td>
<td>8 / 0</td>
<td>37</td>
<td>51</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>CL</td>
<td>1987 -6</td>
<td>DF</td>
<td>.38</td>
<td>582</td>
<td>491 / 91</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>1987 -6</td>
<td>DF</td>
<td>.36</td>
<td>250</td>
<td>194 / 56</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>1987 -6</td>
<td>DF</td>
<td>.34</td>
<td>430</td>
<td>380 / 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>1987 -6</td>
<td>DF</td>
<td>.37</td>
<td>15</td>
<td>13 / 2</td>
<td>12</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>1987 -6</td>
<td>DF</td>
<td>.25</td>
<td>35</td>
<td>30 / 5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>1987 -6</td>
<td>DF</td>
<td>.24</td>
<td>295</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>1987 -6</td>
<td>DF</td>
<td>.19</td>
<td>149</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>1987 -6</td>
<td>DF</td>
<td>.46</td>
<td>32</td>
<td>32 / 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>1985 -5</td>
<td>DF</td>
<td>.18</td>
<td>278</td>
<td>277 / 1</td>
<td>8</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>1985 -5</td>
<td>DF</td>
<td>.56</td>
<td>21</td>
<td>21 / 0</td>
<td>10</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>1985 -5</td>
<td>DF</td>
<td>.35</td>
<td>148</td>
<td>120 / 28</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>1985 -5</td>
<td>DF</td>
<td>.41</td>
<td>33</td>
<td>33 / 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>1985 -5</td>
<td>DF</td>
<td>.61</td>
<td>1</td>
<td>0 / 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>1985 -5</td>
<td>DF</td>
<td>.55</td>
<td>45</td>
<td>0 / 45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>1985 -5</td>
<td>DF</td>
<td>.60</td>
<td>1</td>
<td>0 / 1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>1985 -5</td>
<td>DF</td>
<td>.51</td>
<td>577</td>
<td>164 / 413</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>1985 -5</td>
<td>DF</td>
<td>.72</td>
<td>5</td>
<td>5 / 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>1985 -5</td>
<td>DF</td>
<td>.53</td>
<td>29</td>
<td>21 / 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>1985 -5</td>
<td>DF</td>
<td>.59</td>
<td>750</td>
<td>35 / 715</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>1985 -5</td>
<td>DF</td>
<td>.57</td>
<td>33</td>
<td>22 / 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>1985 -5</td>
<td>DF</td>
<td>.77</td>
<td>47</td>
<td>47 / 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>1985 -5</td>
<td>DF</td>
<td>.43</td>
<td>7</td>
<td>6 / 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>1985 -5</td>
<td>DF</td>
<td>.41</td>
<td>230</td>
<td>230 / 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>1985 -5</td>
<td>DF</td>
<td>.49</td>
<td>30</td>
<td>30 / 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>1985 -5</td>
<td>DF</td>
<td>.31</td>
<td>19</td>
<td>5 / 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>1985 -5</td>
<td>DF</td>
<td>.65</td>
<td>46</td>
<td>46 / 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Engins de prélèvement : B = benne Shipeck ; C = petit chalut à perche (2m de large) ; D = drague Charcot-Picard avec caisson (toile de jute) ; DF = drague Charcot-Picard (sans caisson) avec un filet de 10mm de maille, protégé par un filet de 10 à grosse maille ; L = luge. - : indique un prélèvement incomplet ou vide (avarie).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BM 1</td>
<td>200 180</td>
<td>60</td>
<td>42°45.00</td>
<td>9°01.04</td>
<td>42°45.38</td>
<td>9°02.15</td>
<td>D-</td>
<td>C4</td>
<td></td>
</tr>
<tr>
<td>BM 2</td>
<td>220 220</td>
<td>240</td>
<td>42°45.71</td>
<td>9°02.64</td>
<td>42°45.44</td>
<td>9°02.21</td>
<td>D-</td>
<td>C4</td>
<td></td>
</tr>
<tr>
<td>BM 3</td>
<td>200 186</td>
<td>230</td>
<td>42°45.46</td>
<td>9°02.14</td>
<td>42°45.22</td>
<td>9°01.56</td>
<td>DF</td>
<td>C4</td>
<td></td>
</tr>
<tr>
<td>BM 4</td>
<td>200 200</td>
<td></td>
<td>42°45.20</td>
<td>9°01.31</td>
<td></td>
<td></td>
<td>B</td>
<td>C4</td>
<td></td>
</tr>
<tr>
<td>BM 5</td>
<td>200 200</td>
<td></td>
<td>42°45.70</td>
<td>9°02.69</td>
<td>42°45.41</td>
<td>9°02.07</td>
<td>D</td>
<td>C4</td>
<td></td>
</tr>
<tr>
<td>BM 6</td>
<td>173 199</td>
<td>230</td>
<td>42°45.30</td>
<td>9°01.87</td>
<td>42°45.25</td>
<td>9°01.55</td>
<td>L</td>
<td>C4</td>
<td></td>
</tr>
<tr>
<td>BM 7</td>
<td>155 156</td>
<td>255</td>
<td>42°45.20</td>
<td>9°01.86</td>
<td>42°45.12</td>
<td>9°01.50</td>
<td>DF</td>
<td>C4</td>
<td>B</td>
</tr>
<tr>
<td>BM 8</td>
<td>155 155</td>
<td></td>
<td>42°45.12</td>
<td>9°01.50</td>
<td></td>
<td></td>
<td>B</td>
<td>C4</td>
<td></td>
</tr>
<tr>
<td>BM B</td>
<td>155 155</td>
<td></td>
<td>42°45.12</td>
<td>9°01.50</td>
<td></td>
<td></td>
<td>B</td>
<td>C4</td>
<td></td>
</tr>
<tr>
<td>BM 9</td>
<td>146 168</td>
<td>255</td>
<td>42°45.17</td>
<td>9°01.92</td>
<td>42°45.13</td>
<td>9°01.40</td>
<td>DJ</td>
<td>C4</td>
<td></td>
</tr>
<tr>
<td>BM 60</td>
<td>214</td>
<td>250</td>
<td>42*41.79</td>
<td>8*47.51</td>
<td>42*41.76</td>
<td>8*48.39</td>
<td>DF</td>
<td>C3</td>
<td>B</td>
</tr>
<tr>
<td>BM 61</td>
<td>345</td>
<td>373</td>
<td>240</td>
<td>42*41.92</td>
<td>8*47.20</td>
<td>42*41.79</td>
<td>8*46.41</td>
<td>DF</td>
<td>C3</td>
</tr>
<tr>
<td>BM 62</td>
<td>350</td>
<td>350</td>
<td>42*41.90</td>
<td>8*46.95</td>
<td>B</td>
<td>C3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 63</td>
<td>230</td>
<td>230</td>
<td>42*41.79</td>
<td>8*47.39</td>
<td>B</td>
<td>C3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 64</td>
<td>171</td>
<td>171</td>
<td>42*41.78</td>
<td>8*47.71</td>
<td>B</td>
<td>C3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 64</td>
<td>170</td>
<td>170</td>
<td>42*41.78</td>
<td>8*47.70</td>
<td>B</td>
<td>C3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 65</td>
<td>145</td>
<td>145</td>
<td>42*41.62</td>
<td>8*48.19</td>
<td>B-</td>
<td>C3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 66</td>
<td>148</td>
<td>148</td>
<td>42*41.58</td>
<td>8*48.22</td>
<td>B-</td>
<td>C3</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 67</td>
<td>210</td>
<td>212</td>
<td>10</td>
<td>42*56.55</td>
<td>9*33.62</td>
<td>42*57.10</td>
<td>9*33.73</td>
<td>DF</td>
<td>C6 S</td>
</tr>
<tr>
<td>BM 68</td>
<td>234</td>
<td>237</td>
<td>190</td>
<td>42*57.07</td>
<td>9*33.99</td>
<td>42*56.43</td>
<td>9*33.78</td>
<td>DF</td>
<td>C6 S</td>
</tr>
<tr>
<td>BM 69</td>
<td>234</td>
<td>234</td>
<td>10</td>
<td>42*56.47</td>
<td>9*33.75</td>
<td>42*56.97</td>
<td>9*33.99</td>
<td>D</td>
<td>C6 S</td>
</tr>
<tr>
<td>BM 70</td>
<td>303</td>
<td>310</td>
<td>190</td>
<td>42*56.80</td>
<td>9*35.83</td>
<td>42*56.12</td>
<td>9*35.46</td>
<td>D</td>
<td>C6 S</td>
</tr>
<tr>
<td>BM 71</td>
<td>382</td>
<td>390</td>
<td>10</td>
<td>42*55.34</td>
<td>9*40.07</td>
<td>42*56.87</td>
<td>9*40.34</td>
<td>D</td>
<td>C6 S</td>
</tr>
<tr>
<td>BM 72</td>
<td>392</td>
<td>392</td>
<td>42*57.01</td>
<td>9*40.48</td>
<td>B</td>
<td>C6 S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 73</td>
<td>303</td>
<td>303</td>
<td>42*56.80</td>
<td>9*35.86</td>
<td>B</td>
<td>C6 S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 74</td>
<td>230</td>
<td>230</td>
<td>42*57.08</td>
<td>9*33.97</td>
<td>B</td>
<td>C6 S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 75</td>
<td>180</td>
<td>180</td>
<td>42*46.94</td>
<td>9*33.44</td>
<td>B</td>
<td>C6 S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 76</td>
<td>182</td>
<td>196</td>
<td>190</td>
<td>42*57.46</td>
<td>9*33.55</td>
<td>42*56.76</td>
<td>9*33.48</td>
<td>DF</td>
<td>C6 S</td>
</tr>
<tr>
<td>BM 77</td>
<td>160</td>
<td>172</td>
<td>10</td>
<td>42*56.97</td>
<td>9*33.41</td>
<td>42*57.68</td>
<td>9*33.49</td>
<td>DF</td>
<td>C6 S</td>
</tr>
<tr>
<td>BM 78</td>
<td>163</td>
<td>170</td>
<td>190</td>
<td>42*57.72</td>
<td>9*33.49</td>
<td>42*57.13</td>
<td>9*33.45</td>
<td>D</td>
<td>C6 S</td>
</tr>
<tr>
<td>BM 79</td>
<td>142</td>
<td>146</td>
<td>10</td>
<td>42*57.29</td>
<td>9*33.35</td>
<td>42*57.74</td>
<td>9*33.44</td>
<td>DF-</td>
<td>C6 S</td>
</tr>
<tr>
<td>BM 80</td>
<td>142</td>
<td>146</td>
<td>190</td>
<td>42*57.76</td>
<td>9*33.43</td>
<td>42*57.14</td>
<td>9*33.36</td>
<td>DF</td>
<td>C6 S</td>
</tr>
<tr>
<td>BM 81</td>
<td>128</td>
<td>134</td>
<td>10</td>
<td>42*57.20</td>
<td>9*33.31</td>
<td>42*57.66</td>
<td>9*33.37</td>
<td>DF</td>
<td>C6 S</td>
</tr>
<tr>
<td>BM 82</td>
<td>148</td>
<td>146</td>
<td>190</td>
<td>42*57.43</td>
<td>9*33.36</td>
<td>42*56.27</td>
<td>9*33.12</td>
<td>C</td>
<td>C6 S</td>
</tr>
<tr>
<td>BM 83</td>
<td>125</td>
<td>122</td>
<td>10</td>
<td>42*56.40</td>
<td>9*33.14</td>
<td>42*57.03</td>
<td>9*33.26</td>
<td>DF</td>
<td>C6 S</td>
</tr>
<tr>
<td>BM 84</td>
<td>111</td>
<td>105</td>
<td>190</td>
<td>42*57.01</td>
<td>9*33.18</td>
<td>42*56.39</td>
<td>9*32.78</td>
<td>DF</td>
<td>C6 S</td>
</tr>
<tr>
<td>BM 85</td>
<td>106</td>
<td>106</td>
<td>42*56.40</td>
<td>9*32.77</td>
<td>B</td>
<td>C6 S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 86</td>
<td>136</td>
<td>136</td>
<td>42*57.68</td>
<td>9*33.40</td>
<td>B</td>
<td>C6 S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 87</td>
<td>116</td>
<td>108</td>
<td>10</td>
<td>42*57.69</td>
<td>9*33.32</td>
<td>42*58.38</td>
<td>9*33.41</td>
<td>DF</td>
<td>C6 S</td>
</tr>
<tr>
<td>BM 88</td>
<td>152</td>
<td>150</td>
<td>350</td>
<td>43*12.05</td>
<td>9*32.53</td>
<td>43*12.93</td>
<td>9*32.22</td>
<td>DF</td>
<td>C6 N</td>
</tr>
<tr>
<td>BM 89</td>
<td>182</td>
<td>190</td>
<td>170</td>
<td>43*12.98</td>
<td>9*32.37</td>
<td>43*12.36</td>
<td>9*32.58</td>
<td>DF</td>
<td>C6 N</td>
</tr>
<tr>
<td>BM 90</td>
<td>215</td>
<td>233</td>
<td>350</td>
<td>43*12.44</td>
<td>9*32.66</td>
<td>43*13.23</td>
<td>9*32.35</td>
<td>DF</td>
<td>C6 N</td>
</tr>
<tr>
<td>BM 91</td>
<td>278</td>
<td>290</td>
<td>170</td>
<td>43*13.20</td>
<td>9*32.64</td>
<td>43*12.33</td>
<td>9*33.06</td>
<td>DF</td>
<td>C6 N</td>
</tr>
<tr>
<td>BM 92</td>
<td>340</td>
<td>353</td>
<td>350</td>
<td>43*12.37</td>
<td>9*33.68</td>
<td>43*13.57</td>
<td>9*33.26</td>
<td>D</td>
<td>C6 N</td>
</tr>
<tr>
<td>BM 93</td>
<td>410</td>
<td>410</td>
<td>186</td>
<td>43*14.08</td>
<td>9*35.57</td>
<td>43*13.34</td>
<td>9*35.49</td>
<td>D</td>
<td>C6 N</td>
</tr>
<tr>
<td>BM 94</td>
<td>410</td>
<td>410</td>
<td>43*13.34</td>
<td>9*35.52</td>
<td>B</td>
<td>C6 N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 95</td>
<td>350</td>
<td>350</td>
<td>43*13.34</td>
<td>9*33.22</td>
<td>B</td>
<td>C6 N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 96</td>
<td>314</td>
<td>320</td>
<td>43*13.31</td>
<td>9*32.89</td>
<td>43*12.36</td>
<td>9*33.42</td>
<td>B</td>
<td>C6 N</td>
<td></td>
</tr>
<tr>
<td>BM 97</td>
<td>232</td>
<td>232</td>
<td>43*12.26</td>
<td>9*32.74</td>
<td>B</td>
<td>C6 N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 98</td>
<td>154</td>
<td>154</td>
<td>43*12.31</td>
<td>9*32.49</td>
<td>B</td>
<td>C6 N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 99</td>
<td>173</td>
<td>248</td>
<td>170</td>
<td>43*12.12</td>
<td>9*32.56</td>
<td>43*10.88</td>
<td>9*33.18</td>
<td>C</td>
<td>C6 N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Campagne et Stations</th>
<th>Profondeur (m D - F)</th>
<th>Dist (milles)</th>
<th>Transect</th>
<th>Gryphus</th>
<th>Gryphus b / v</th>
<th>Terebratulina</th>
<th>Megerlia</th>
<th>Megathiris</th>
<th>Novocrania</th>
<th>Platidia</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM 3 D</td>
<td>200 186</td>
<td>C4</td>
<td>3</td>
<td>36/0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 7 D</td>
<td>155 156</td>
<td>C4</td>
<td>11</td>
<td>11/0</td>
<td>19</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 11 C</td>
<td>150 159</td>
<td>C4</td>
<td>421</td>
<td>302/119</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 13 D</td>
<td>147 144</td>
<td>C4</td>
<td>7</td>
<td>6/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 19 D</td>
<td>143 141</td>
<td>C4</td>
<td>10</td>
<td>10/0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 20 D</td>
<td>137 123</td>
<td>C4</td>
<td>3</td>
<td>1/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 22 DJ</td>
<td>115 115</td>
<td>C4</td>
<td>8</td>
<td>6/2</td>
<td>25</td>
<td>11</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 26 D</td>
<td>132 128</td>
<td>C4</td>
<td>14</td>
<td></td>
<td>4</td>
<td>11</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 27 D</td>
<td>128 132</td>
<td>C3</td>
<td>138</td>
<td>8/130</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 28 D</td>
<td>143 136</td>
<td>C3</td>
<td>16</td>
<td>16/0</td>
<td>29</td>
<td>7</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 29 D</td>
<td>149 142</td>
<td>C3</td>
<td>2</td>
<td></td>
<td>5</td>
<td>13</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 30 D</td>
<td>147 139</td>
<td>C3</td>
<td>3</td>
<td></td>
<td>21</td>
<td>41</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 31 D</td>
<td>124 122</td>
<td>C2</td>
<td>2</td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 32 D</td>
<td>124 122</td>
<td>C2</td>
<td>2</td>
<td></td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 33 D</td>
<td>130 128</td>
<td>C2</td>
<td>2</td>
<td>5/24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 37 D</td>
<td>143 141</td>
<td>C2</td>
<td>9</td>
<td>1/8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 38 D</td>
<td>150 152</td>
<td>C2</td>
<td>7</td>
<td>6/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 39 D</td>
<td>164 165</td>
<td>C2</td>
<td>2</td>
<td>21</td>
<td>19/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 40 DJ</td>
<td>181 176</td>
<td>C2</td>
<td>165</td>
<td>155/11</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 45 C</td>
<td>174 176</td>
<td>C2</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 46 D</td>
<td>197 192</td>
<td>C2</td>
<td>92</td>
<td>92/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 48 D</td>
<td>231 224</td>
<td>C2</td>
<td>2</td>
<td>2/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 58 D</td>
<td>150 162</td>
<td>C3</td>
<td></td>
<td></td>
<td>5</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 59 D</td>
<td>170 188</td>
<td>C3</td>
<td></td>
<td></td>
<td>13</td>
<td>11</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 60 D</td>
<td>214 250</td>
<td>C3</td>
<td>32</td>
<td>32/0</td>
<td>25</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 61 D</td>
<td>345 373</td>
<td>C3</td>
<td>2</td>
<td>2/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 66 B</td>
<td>148 148</td>
<td>C3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 67 D</td>
<td>210 212</td>
<td>C6 S</td>
<td>76</td>
<td>75/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 68 D</td>
<td>234 237</td>
<td>C6 S</td>
<td>12</td>
<td>12/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 76 D</td>
<td>182 196</td>
<td>C6 S</td>
<td>74</td>
<td>74/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 77 D</td>
<td>160 172</td>
<td>C6 S</td>
<td>28</td>
<td>28/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 78 DJ</td>
<td>163 170</td>
<td>C6 S</td>
<td>5</td>
<td>5/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 80 D</td>
<td>142 146</td>
<td>C6 S</td>
<td>43</td>
<td>39/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 81 D</td>
<td>128 134</td>
<td>C6 S</td>
<td>7</td>
<td>7/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 82 C</td>
<td>148 146</td>
<td>C6 S</td>
<td>351</td>
<td>260/91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 83 D</td>
<td>125 122</td>
<td>C6 S</td>
<td>15</td>
<td>14/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 84 D</td>
<td>111 105</td>
<td>C6 S</td>
<td>24</td>
<td>10/14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 88 D</td>
<td>152 150</td>
<td>C6 N</td>
<td>56</td>
<td>5/51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 89 D</td>
<td>182 190</td>
<td>C6 N</td>
<td>18</td>
<td>11/7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 90 D</td>
<td>215 233</td>
<td>C6 N</td>
<td>12</td>
<td>11/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 91 D</td>
<td>278 290</td>
<td>C6 N</td>
<td>32</td>
<td>32/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM 99 C</td>
<td>173 248</td>
<td>C6 N</td>
<td>374</td>
<td>231/143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Année</td>
<td>Station</td>
<td>Latitude N (D)</td>
<td>Longitude E (D)</td>
<td>Prof (m)</td>
<td>Latitude N (F)</td>
<td>Longitude E (F)</td>
<td>Prof (m)</td>
<td>Durée (min)</td>
<td>Distance (m)</td>
<td>Gryphus</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------</td>
<td>-------------</td>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>2012</td>
<td>2-7</td>
<td>42°14.22'</td>
<td>9°37.70'</td>
<td>110</td>
<td>42°15.65'</td>
<td>9°38.38'</td>
<td>108</td>
<td>30</td>
<td>2815</td>
<td>141</td>
</tr>
<tr>
<td>2012</td>
<td>2-10</td>
<td>41°56.60'</td>
<td>9°33.73'</td>
<td>142</td>
<td>41°55.48'</td>
<td>9°32.49'</td>
<td>130</td>
<td>30</td>
<td>2685</td>
<td>4237</td>
</tr>
<tr>
<td>2012</td>
<td>2-13</td>
<td>42°21.20'</td>
<td>9°39.47'</td>
<td>318</td>
<td>42°24.25'</td>
<td>9°40.28'</td>
<td>361</td>
<td>60</td>
<td>5759</td>
<td>5</td>
</tr>
<tr>
<td>2012</td>
<td>2-15</td>
<td>42°34.75'</td>
<td>9°40.78'</td>
<td>337</td>
<td>42°37.32'</td>
<td>9°39.67'</td>
<td>365</td>
<td>54</td>
<td>5000</td>
<td>1</td>
</tr>
<tr>
<td>2012</td>
<td>2-16</td>
<td>42°22.35'</td>
<td>9°37.16'</td>
<td>113</td>
<td>42°20.83'</td>
<td>9°37.14'</td>
<td>112</td>
<td>31</td>
<td>2833</td>
<td>374</td>
</tr>
<tr>
<td>2012</td>
<td>2-20</td>
<td>41°35.21'</td>
<td>9°31.98'</td>
<td>383</td>
<td>41°32.34'</td>
<td>9°33.22'</td>
<td>376</td>
<td>60</td>
<td>4777</td>
<td>15</td>
</tr>
<tr>
<td>2012</td>
<td>2-21</td>
<td>41°28.46'</td>
<td>9°28.53'</td>
<td>92</td>
<td>41°29.82'</td>
<td>9°27.61'</td>
<td>88</td>
<td>30</td>
<td>2815</td>
<td>1</td>
</tr>
<tr>
<td>2012</td>
<td>2-22</td>
<td>41°38.54'</td>
<td>9°27.64'</td>
<td>106</td>
<td>41°37.11'</td>
<td>9°28.32'</td>
<td>117</td>
<td>30</td>
<td>2796</td>
<td>506</td>
</tr>
<tr>
<td>2012</td>
<td>2-23</td>
<td>41°36.91'</td>
<td>9°32.05'</td>
<td>479</td>
<td>41°34.34'</td>
<td>9°34.21'</td>
<td>482</td>
<td>60</td>
<td>5630</td>
<td>17</td>
</tr>
<tr>
<td>2012</td>
<td>2-80</td>
<td>42°52.28'</td>
<td>4°40.17'</td>
<td>330</td>
<td>42°50.33'</td>
<td>4°43.17'</td>
<td>313</td>
<td>61</td>
<td>5556</td>
<td>35</td>
</tr>
<tr>
<td>2013</td>
<td>3-2</td>
<td>42°28.11'</td>
<td>9°37.38'</td>
<td>89</td>
<td>42°26.64'</td>
<td>9°37.19'</td>
<td>77</td>
<td>30</td>
<td>2741</td>
<td>6</td>
</tr>
<tr>
<td>2013</td>
<td>3-5</td>
<td>42°20.95'</td>
<td>9°37.19'</td>
<td>112</td>
<td>42°22.49'</td>
<td>9°37.16'</td>
<td>110</td>
<td>29</td>
<td>2852</td>
<td>2894</td>
</tr>
<tr>
<td>2013</td>
<td>3-11</td>
<td>41°32.17'</td>
<td>9°33.21'</td>
<td>377</td>
<td>41°35.02'</td>
<td>9°32.09'</td>
<td>370</td>
<td>60</td>
<td>5519</td>
<td>42</td>
</tr>
<tr>
<td>2013</td>
<td>3-13</td>
<td>41°36.79'</td>
<td>9°28.43'</td>
<td>114</td>
<td>41°38.15'</td>
<td>9°27.78'</td>
<td>105</td>
<td>30</td>
<td>2667</td>
<td>5219</td>
</tr>
<tr>
<td>2013</td>
<td>3-15</td>
<td>41°46.04'</td>
<td>9°28.92'</td>
<td>479</td>
<td>41°48.58'</td>
<td>9°31.26'</td>
<td>493</td>
<td>60</td>
<td>5704</td>
<td>41</td>
</tr>
<tr>
<td>2013</td>
<td>3-19</td>
<td>41°56.77'</td>
<td>9°33.91'</td>
<td>143</td>
<td>41°55.54'</td>
<td>9°32.64'</td>
<td>129</td>
<td>29</td>
<td>2852</td>
<td>2391</td>
</tr>
<tr>
<td>2013</td>
<td>3-20</td>
<td>41°14.30'</td>
<td>9°37.73'</td>
<td>106</td>
<td>42°15.71'</td>
<td>9°38.35'</td>
<td>106</td>
<td>29</td>
<td>2760</td>
<td>23</td>
</tr>
<tr>
<td>2013</td>
<td>3-35</td>
<td>42°47.13'</td>
<td>3°54.31'</td>
<td>350</td>
<td>42°44.07'</td>
<td>3°55.19'</td>
<td>478</td>
<td>60</td>
<td>5815</td>
<td>1</td>
</tr>
<tr>
<td>2013</td>
<td>3-75</td>
<td>42°52.33'</td>
<td>4°39.62'</td>
<td>158</td>
<td>42°50.89'</td>
<td>4°41.92'</td>
<td>269</td>
<td>60</td>
<td>5574</td>
<td>94</td>
</tr>
<tr>
<td>2013</td>
<td>3-76</td>
<td>42°49.12'</td>
<td>4°41.75'</td>
<td>345</td>
<td>42°46.13'</td>
<td>4°43.38'</td>
<td>760</td>
<td>60</td>
<td>6000</td>
<td>3</td>
</tr>
<tr>
<td>2014</td>
<td>4-3</td>
<td>42°40.96'</td>
<td>9°34.40'</td>
<td>300</td>
<td>42°38.34'</td>
<td>9°36.49'</td>
<td>268</td>
<td>60</td>
<td>5667</td>
<td>3</td>
</tr>
<tr>
<td>2014</td>
<td>4-6</td>
<td>42°14.76'</td>
<td>9°38.00'</td>
<td>110</td>
<td>42°16.18'</td>
<td>9°38.43'</td>
<td>106</td>
<td>30</td>
<td>2759</td>
<td>19</td>
</tr>
<tr>
<td>2014</td>
<td>4-9</td>
<td>41°37.42'</td>
<td>9°31.40'</td>
<td>448</td>
<td>41°34.96'</td>
<td>9°33.79'</td>
<td>484</td>
<td>60</td>
<td>5556</td>
<td>51</td>
</tr>
<tr>
<td>2014</td>
<td>4-10</td>
<td>41°37.19'</td>
<td>9°28.21'</td>
<td>114</td>
<td>41°38.59'</td>
<td>9°27.57'</td>
<td>105</td>
<td>30</td>
<td>2741</td>
<td>1</td>
</tr>
<tr>
<td>2014</td>
<td>4-12</td>
<td>41°47.37'</td>
<td>9°30.06'</td>
<td>460</td>
<td>41°44.81'</td>
<td>9°27.81'</td>
<td>351</td>
<td>60</td>
<td>5667</td>
<td>36</td>
</tr>
<tr>
<td>2014</td>
<td>4-13</td>
<td>41°57.17'</td>
<td>9°37.14'</td>
<td>446</td>
<td>41°54.14'</td>
<td>9°36.52'</td>
<td>554</td>
<td>60</td>
<td>5667</td>
<td>7</td>
</tr>
<tr>
<td>2014</td>
<td>4-16</td>
<td>41°57.17'</td>
<td>9°34.34'</td>
<td>151</td>
<td>41°56.01'</td>
<td>9°33.03'</td>
<td>135</td>
<td>31</td>
<td>2797</td>
<td>2106</td>
</tr>
<tr>
<td>2014</td>
<td>4-19</td>
<td>42°22.50'</td>
<td>9°37.12'</td>
<td>111</td>
<td>42°20.86'</td>
<td>9°37.14'</td>
<td>112</td>
<td>30</td>
<td>3037</td>
<td>517</td>
</tr>
<tr>
<td>2014</td>
<td>4-21</td>
<td>41°58.53'</td>
<td>9°37.78'</td>
<td>440</td>
<td>42°01.22'</td>
<td>9°39.48'</td>
<td>386</td>
<td>61</td>
<td>5500</td>
<td>4</td>
</tr>
<tr>
<td>2014</td>
<td>4-69</td>
<td>42°35.69'</td>
<td>4°13.25'</td>
<td>750</td>
<td>42°32.90'</td>
<td>4°12.20'</td>
<td>897</td>
<td>60</td>
<td>5371</td>
<td>1</td>
</tr>
<tr>
<td>2014</td>
<td>4-75</td>
<td>42°52.36'</td>
<td>4°40.13'</td>
<td>272</td>
<td>42°50.30'</td>
<td>4°43.08'</td>
<td>315</td>
<td>60</td>
<td>5556</td>
<td>52</td>
</tr>
</tbody>
</table>
9. Cartes

A. Cartes des campaigns en Languedoc et Provence

Fig. 9.1. Golfe du Lion. Localisation de la zone de récolte et stations de récolte de *Gryphus vitreus* lors des campagnes Meditis et Deprog. Voir Tableaux 3 et 4.
Fig. 9-2. Provence Ouest. Localisation des zones de récolte. Les étoiles indiquent les stations de prospection sur les brachiopodes entre 1976 et 1983 - et - Stations des campagnes BraProv (CNRS) et IsoBra (CNRS). Voir Tableaux 3 et 5.

Fig. 9-3. Provence Est. Localisation des zones de récolte et des stations de campagnes BraProv (CNRS). Voir Tableau 3. Les étoiles indiquent les stations de prospection sur les brachiopodes en 1976 lors d'une campagne avec le N/O Antedon dans la Parc national marin de Port-Cros. Cette zone comprend deux des radiales (flèches) suivies par submersible.

B. Cartes des campagnes en Corse

Fig. 9-4. Campagnes en Corse :
À gauche - Localisation des zones de récoltes (A à G) au cours des campagnes BraCors (CNRS), BathyMed (CNRS) et Meditis (Ifremer). Voir Tableaux 6, 8, et10.
À droite - Les radiales qui ont été suivies sur plusieurs années. (voir chapitre 6).

Fig. 9-6. Corse Nord : zones C et D. Localisation des stations de campagnes BraCors (CNRS) et BathyMed (CNRS). Voir Tableaux 6 et 8.

Fig. 9-7. Corse Est: zones E et F. Localisation des stations de campagnes BraCors (CNRS) – numérotées en noir - et Meditis (Ifremer) – numérotées en rouge. Voir Tableaux 6 et 10.

Ci-dessous, les cartes de distribution de **Novocrania anomala**. - **Terebratulina retusa**. - **Megathiris detruncata**. - **Megerlia truncata**. - **Gryphus vitreus**. Voir Tableaux 7 et 10.
Fig. 9-8. Corse Sud : zone G. Localisation des stations de campagnes BraCors (CNRS). Voir Tableau 6.

C. Cartes de distribution en Atlantique et Manche

Aux cartes marines (ci-dessus en A et B) avec les résultats des campagnes rapportées dans ce travail, il apparaît judicieux de compléter ces données en reproduisant les cartes de répartition géographique des six espèces de brachiopodes le long des côtes françaises métropolitaines dans l’océan Atlantique et la Manche, d’après les cartes publiées par Emig (2016, 2017a).

Fig. 9-9. Répartition géographique de six espèces de brachiopodes au large des côtes françaises métropolitaines en Atlantique et Manche (modifié, d’après Emig, 2016, 2017a).
Remerciements

Je voudrais adresser tous mes remerciements à tous les marins avec lesquels j’ai navigué sur divers océans et mers. Et bien sûr, j’ai une pensée émue à tous les marins et leurs capitaines des navires du CNRS : ceux de Marseille, le N/O Antedon sur lequel j’ai commencé ma carrière et appris le travail en mer, le N/O Antedon 2 sur lequel j’ai fait ma dernier mission en mer, le N/O Alciope ; ceux de Villefranche-sur-mer le N/O Catherine-Laurence et le N/O Korotneff. Que de moments de partage, de vie en commun, de plaisir et de bonheur, aussi de labeur et de gros temps... une vraie vie de marin ! Et transmettre toutes mes amitiés à tous les collègues qui ont participé aux campagnes en mer de la RCP-CNRS n° 728, et en particulier à tous les membres du prograine, parmi lesquels Fernando Álvarez (Oviedo), Jean-Henri Delance (Dijon), Italo Di Geronimo (Catania), Bernard Laurin (Dijon), Jean Revert (Pau).

À bord du N/O Catherine-Laurence durant une campagne BRACORS, de gauche à droite :

Mes remerciements aussi à Jocelyne Martin (Ifremer, Nantes) et à Angélique Jadaud (Ifremer, Sète) pour m’avoir communiquer les données sur les brachiopodes des campagnes Ifremer, citées dans ce travail.

Le Commandant en chef pour la Méditerranée et Préfet maritime de la Méditerranée (Marine Nationale) m’a toujours accordé les autorisations pour pouvoir travailler dans certaines zones interdites à tous dragages et surtout a accédé à mes demandes de plongée en submersible nommé SMI (Sous-Marin d’Intervention de la Marine Nationale) Griffon, qu’il en soit chaleureusement remercié. Trois plongées ont été effectuées, les pilotes furent le Lieutenant de Vaisseau Roque, les Enseignes de Vaisseau 1er Classe Gomez et Arnoult. C’est avec ce dernier que nous avons plongé jusqu’à 600 m de profondeur, la limite autorisée et rarement atteinte par le « Griffon », aussi c’est avec une attention particulière que le mécanicien à bord a surveillé toute possible intrusion d’eau ! Mes remerciements aussi à l’aide fourni par Paul-Henri Nargeolet dans l’équipement du submersible par le Groupe d’intervention sous la mer (GISMER) de la Marine Nationale.

Enfin, mes meilleurs souvenirs à mes amis Aleksandra Bitner (Varsovie) et Fernando Álvarez (Oviedo) pour leurs aide, commentaires et critiques dans la réalisation de ce livre, qu’ils en soient cordialement et chaleureusement remerciés.

Monterosato T. de (1879). Note sur les espèces de Platidia. Journal de Conchyliologie, 27, 306-308, pl. 13, fig. 3.

Philippi R.A. (1836). Enumeratio molluscorum Siciliae cum viventium tum in tellure tertiae fossilium quae in itinere suo observavit. [Volumen secundum continens addenda et emendanda, nec non

Reeve L. (1861b). On the Recent Terebratulae; in reply to some observations by Prof. E. Suess of Vienna. Annals and Magazine of natural History, 7 (3), 443-448.

Appendice A.

Pour un renouvellement de la taxinomie des brachiopodes actuels

Parmi les grands groupes zoologiques, les brachiopodes ont une spécificité liée à leur ancienneté dans les registres fossiles (parmi les plus anciens fossiles connus) et par leur relativement petit nombre d’espèces actuelles : ce sont, à de rares exceptions près, que des paléontologues qui les étudient, jusqu’à en devenir une « chasse-gardée » par et pour ces derniers (Emig, 2008). En conséquence, la taxinomie des espèces a été faite selon une systématique à tendance paléontologique voire stratigraphique et même géographique, c’est-à-dire basée sur les seuls caractères (certains sans valeur taxinomique) des restes fossiles que sont la coquille et ses structures internes, parfois modifiées par la taphonomie (Emig & Rachebœuf, 1990 ; Emig, 2002). Utilisée pour définir certains étages stratigraphiques, la même espèce fossile de brachiopode peut parfois changer de nom en changeant d’étage !

Le nombre de taxons fossiles décrits est de l’ordre de 30 000 espèces qui s’avèrent aujourd’hui très largement sur-estimées (tout comme pour les genres) - peut-être à réduire de moitié ? - tandis qu’il est probable que 5-10% des espèces actuelles dites valides soient en fait des synonymes d’espèces déjà décrites (Emig, 2017b). Une conséquence de l’absence de diagnoses complètes à tous les niveaux hiérarchiques, ce qui, alors que le nombre de caractères disponibles est faible, a conduit à utiliser des variations d’un caractère comme critère pour décrire de nouvelles espèces ou genres, même parfois à partir de quelques fragments de coquille. Ces tendances héritées du XIXe siècle sont restées vivaces pour certains paléontologues jusqu’à nos jours. Les six espèces de brachiopodes, récoltées dans le Bathyal méditerranéen, attestent, à elles seules, de toutes les ambiguïtés de la systématique utilisée actuellement. Une rapide évolution vers les nouvelles méthodes comparatives phylogénétiques, dont la cladistique, est nécessaire, car ces dernières ont connues un développement rapide au cours des vingt-cinq dernières années (Darlu & Tassy, 2018).

Le grand nombre de variétés et de synonymes (actuelles ou fossiles) de ces six espèces, souvent sans critères clairs pour les différencier, traduit le problème que pose l’absence de diagnose et d’études des variations des caractères au sein et entre les différentes populations constituant l’espèce. Dans le cas présent, il s’agit surtout de descriptions par des auteurs italiens et anglophones. Et il n’est pas sûr qu’il soit possible de faire une liste exhaustive de ces variétés et synonymes en les rapportant avec certitude à l’une ou l’autre des espèces valides, tant les descriptions sont vagues. Cette tendance se poursuit dans des travaux récents sur les formes fossiles, elle concerne parfois des individus de petite taille (millimétrique) ce qui devrait interroger les auteurs quant au développement en cours de vie de certains caractères. En effet, bien des formes juvéniles peuvent ne pas posséder tous les caractères pour déterminer avec certitude l’appartenance à une espèce.

À partir de ces constats, dont le but ici n’est pas de stigmatiser auteurs et discipline, et encore moins de polémiquer, il faut se poser la question « cette systématique reste-elle transposable aux espèces actuelles ? » et la réponse est sans conteste NON. Car les caractères taxinomiques et phylogénétiques dépassent les seuls restes fossiles utilisés jusqu’à présent, c’est-à-dire la coquille. Il est vrai que les paléontologues ne sont ni enseignés, ni équipés pour étudier la morphologie et l’anatomie du corps (aussi nommé les parties molles) des brachiopodes, ni les moyens écologiques et océanographiques pour établir les caractéristiques du bioréacteur et des biocœnoses. Or, c’est bien là que se trouvent des caractères pour définir les espèces actuelles et leurs populations. Combien de descriptions renseignent sur les muscles, le lophophore, les gonades, la larve et son ontogénèse, les spicules, etc. ? Cependant, depuis quelques années, on assiste à un accroissement des publications sur la biologie, l’anatomie et l’écologie des espèces actuelles de brachiopodes ; mais ce n’est pas pour autant que les systématiciens des brachiopodes les aient intégrées dans leurs travaux.

Un point souvent évoqué dans des publication est la baisse constante du nombre de taxons de brachiopodes depuis le Mésozoïque ; or, le nombre d’espèces actuelles, environ 400 (Emig et al., 2018), couvre une période d’au moins un million d’années, et, dans le passé géologique, il n’existe

14 En France la paléontologie est considérée comme appartenant aux Sciences de la Vie comme aux Sciences de la Terre (plus dans le sens environnemental).

La systématique des espèces actuelles de brachiopodes nécessite donc une profonde révision dans ses concepts et méthodes, comme cela se fait dans les autres groupes zoologiques (Zaharias & Sanders, 2018), hors du seul contexte paléontologique. L'application de la cladistique prévue dans le projet pour la révision de la part H (Brachiopoda) du Treatise on Invertebrate Paleontology, n’a jamais atteint le niveau genre et espèce (Williams & Carlson, 2007). S’y est ajoutée la tendance génétique qui reste incapable d’identifier les espèces qui sont déterminées selon la systématique classique. Dans les bases de données génétiques, les espèces valides voisinent avec des synonymes mentionnés comme valides ou traités comme tels.

La systématique dans les sciences de vie n’est qu’un outil, certes indispensable, mais pas une fin en soi, comme cela est souvent le cas en paléontologie. Identifier à partir d’une diagnose fiable est la base pour tout travail ultérieur, comme ici sur la distribution des espèces dans le Bathyal : la présence des espèces dans une ou plusieurs biocénoses est une donnée à intègrer dans la description des espèces, voire comme caractère taxinomique dans leur systématique.

Une espèce doit avoir une diagnose explicite, comme le genre auquel elle appartient doit avoir la sienne distincte de celle des espèces qu’il regroupe. Dans ce dernier cas, la diagnose ne comporte que les seuls caractères taxinomiques, mais tous, permettant d’identifier le genre selon la définition donnée dans le code 10 (ICZN, 1999). Ces caractères dans les formes actuelles ne peuvent se résumer à ceux de la seule coquille. Les parties anatomiques, comme les muscles, les néphridies, le lophophore et la disposition des tentacules, la reproduction (des gonades à la métamorphose de la larve), sont autant de données pouvant contenir des critères d’identification, même s’ils ne sont disponibles durant toute la vie d’un individu. Ceci rend d’autant plus primordial d’en connaître toutes les variations au cours du cycle de vie.

En outre, parmi les spécialistes des brachiopodes, il a trop souvent confusion entre diagnose et description qui sont deux termes à signification bien différente et qui ne peuvent se substituer l’une à l’autre. La description concerne l’ensemble des observations sur les exemplaires récoltés au-delà de la diagnose, en complétant les connaissances sur le mode de vie, de reproduction, le lieu de vie et la faune environnante, les conditions écologiques, etc. De même, il y a souvent confusion entre la diagnose du genre et celle de l’espèce : c’est une ineptie d’écrire pour un genre monospécifique : « même diagnose que pour l’espèce » ou « as for species ». Ne désirant pas me fâcher avec mes collègues et sans vouloir blâmer des disparus, je laisse à chacun le soin de trouver ces manquements dans les travaux récents au cours du dernier siècle ou plus.

Le temps est venu d’une nouvelle approche dans un contexte phylogénétique pour les espèces actuelles de brachiopodes.
Appendice B.

Historique de la systématique de Terebratula minor Philippi, 1836

Philippi (1836) a créé une variété fossile nommée minor de l'espèce Terebratula vitrea, dont elle se distingue seulement par la petite taille de la coquille (Fig. B-1) : il indique une taille maximale de 7,5 mm (ou lignes - soit 17 mm, sachant qu'une ligne correspond à 2,256 mm en unité française). Les exemplaires provenaient de Calabre (Italie du Sud) notamment d'Ibisco, Arcile et Molino di Scordia (Philippi, 1836, 1844).

Suess (1859) a distingué Terebratula minor de T. vitrea parce que « kleinere Art mit stumpfen Bändern und stärkerer Schal » et a nommé ses spécimens vivants T. vitrea minor ou T. minor, provenant des environs de l'île de Lipari (au Nord-Est de la Sicile, Italie), aujourd'hui Gryphus vitreus. Reeves (1861a) place T. minor en synonymie avec T. vitrea, ce qui entraîne la réponse suivante de Suess (1861) : « Nor do I approve the altered generic position of several species, or the uniting of T. minor with T. vitrea. » Dans sa réplique, Reeves (1861b) ne répondra pas sur ce point.

Seguenza (1865b, 1870) a souligné que Terebratula minor n'est pas distincte de T. vitrea ; mais sa comparaison reste ambiguë : « Dalle esposte osservazioni conchiudiamo, che le T. minor può ritenersi come specie differente dall' T. vitrea, ma essa non è ben distinta. » Dans son tableau I, cet auteur montre les similitudes entre les trois espèces qui en fait sont des variations menant toutes à Gryphus vitreus, donc à comparer avec Boullier et al. (1986), Huault (1990) (Fig. 5-5). D'autres formes, comme T. leyliiana (Tableau 11 ; voir Davidson, 1870), ont peu de différences avec la coquille de T. minor et que Seguenza (1871) a qualifié de T. minor. Davidson (1880) reconnaît que : « T. vitrea varies much, and several of its varieties or modifications in shape have been described as distinct species. » Néanmoins quelques lignes après il maintient Terebratula vitrea, var. minor tout en soulignant : « it is often difficult distinguishable from the young shell of T. vitrea. » Les localités se situent dans l'océan Atlantique (depuis l'Arctique au cap de Bonne-Espérance), en mer Méditerranée, et des fossiles dans le Sud de l'Italie. Et il ajoute : « The question may, indeed, be further mooted, whether Philippi was not correct in considering Ter. minor or affinis as merely a small variety of Ter. vitrea. Professor Suess, however, believes the former shell to be specifically distinct from Ter. vitrea. Dr Gwyn Jeffreys and my self were also at one time disposed to consider the Ter. davidsoni, A. Adams (Annals and Mag. Nat. Hist., 3d ser., vol. v. p. 12, 1860, dredged at Satanomoski, Japan), as identical with Ter. vitrea or affinis. This view is not, however, shared by our distinguished contemporary, Mr Dall. » Néanmoins, en 1886,
Tableau 11. Liste des espèces ou variétés (depuis le Miocène) se rapportant à *Terebratula minor*, considérée aujourd’hui comme synonyme de *Gryphus vitreus*. Cette liste n’est pas exhaustive, mais traduit bien la complexité et l’ambiguïté par absence de vrais caractères taxinomiques pour rapporter avec certitude des individus à une espèce identifiable.

<table>
<thead>
<tr>
<th>Espèce ou variété</th>
<th>Auteur(s)</th>
<th>Année(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terebratula vitrea var. minor, Philippi, 1836</td>
<td>Philippi (1836)</td>
<td></td>
</tr>
<tr>
<td>Terebratula affinis Calcara, 1845</td>
<td>Calcara (1845)</td>
<td></td>
</tr>
<tr>
<td>Terebratula miocenica Michelotti, 1847</td>
<td>a Michelotti (1847)</td>
<td></td>
</tr>
<tr>
<td>Terebratula vitrea (Anomia)</td>
<td>Aradas (1847), Reeve (1861a), Seguenza (1870)</td>
<td></td>
</tr>
<tr>
<td>Terebratula minor</td>
<td>Suess (1859, 1861)</td>
<td></td>
</tr>
<tr>
<td>Terebratula affinis</td>
<td>Seguenza (1862a, 1862b)</td>
<td></td>
</tr>
<tr>
<td>Terebratula miocenica</td>
<td>Seguenza (1862b)</td>
<td></td>
</tr>
<tr>
<td>Terebratula minor</td>
<td>Seguenza (1865a, 1865b, 1871)</td>
<td></td>
</tr>
<tr>
<td>Terebratula lyellia Seguenza, 1865</td>
<td>Davidson (1864, 1880)</td>
<td></td>
</tr>
<tr>
<td>Terebratula rovasendianus Seguenza, 1866</td>
<td>Davidson (1864)</td>
<td></td>
</tr>
<tr>
<td>Terebratula minor = T. affinis</td>
<td>Seguenza, 1865a</td>
<td></td>
</tr>
<tr>
<td>Terebratula lyellia</td>
<td>Seguenza, (1866)</td>
<td></td>
</tr>
<tr>
<td>Terebratula minor</td>
<td>Aradas & Benoit (1870)</td>
<td></td>
</tr>
<tr>
<td>Terebratula minor</td>
<td>Davidson (1870)</td>
<td></td>
</tr>
<tr>
<td>Terebratula minor</td>
<td>Seguenza (1871-1874)</td>
<td></td>
</tr>
<tr>
<td>Terebratula minor</td>
<td>Davidson (1886)</td>
<td></td>
</tr>
<tr>
<td>Terebratula minor</td>
<td>Davidson (1880)</td>
<td></td>
</tr>
<tr>
<td>Terebratula minor</td>
<td>Jeffreys (1878)</td>
<td></td>
</tr>
<tr>
<td>Terebratula minor</td>
<td>Carus (1893)</td>
<td></td>
</tr>
<tr>
<td>Terebratula minor</td>
<td>Sacco (1902)</td>
<td></td>
</tr>
<tr>
<td>Terebratula (Liothyrina) minor</td>
<td>Maugeri Patanè (1929)</td>
<td></td>
</tr>
<tr>
<td>Terebratula (Liothyrina) minor var. depressa</td>
<td>Maugeri Patanè (1929)</td>
<td></td>
</tr>
<tr>
<td>Terebratula (Liothyrina) minor var. globosa</td>
<td>Maugeri Patanè (1929)</td>
<td></td>
</tr>
<tr>
<td>Terebratula (Liothyrina) minor var. rotundata</td>
<td>Maugeri Patanè (1929)</td>
<td></td>
</tr>
<tr>
<td>Terebratula vitrea var. minor</td>
<td>* Granier (1978)</td>
<td></td>
</tr>
<tr>
<td>Gryphus miocaenicus</td>
<td>a Meznerics (1943)</td>
<td></td>
</tr>
<tr>
<td>Terebratula (Liothyrina) vitrea var. minor</td>
<td>Lipparini et al. (1981)</td>
<td></td>
</tr>
<tr>
<td>Eurysina minor</td>
<td>* Cooper (1983)</td>
<td></td>
</tr>
<tr>
<td>Liothyrina agulhasensis Helmcke, 1939</td>
<td>b *Helmcke (1939, 1940)</td>
<td></td>
</tr>
<tr>
<td>Gryphus minor</td>
<td>Borghi et al. (2005)</td>
<td></td>
</tr>
<tr>
<td>Gryphus miocaenicus</td>
<td>a Bitner & Dulai (2004)</td>
<td></td>
</tr>
</tbody>
</table>

* Des exemplaires actuels ont été signalés sous ce nom d’espèce par l’auteur.

a. *Terebratula miocenica* a été décrite par Michelotti (1847, p. 76) de Serravalle Scrivia, situé à environ 50 km au nord de Gênes (Italie), en soulignant que : « le front enfin, qui dans l’espèce de l’auteur Anglais est coupé en
ligne droite, est arrondi dans notre espèce. Ce dernier caractère suffit à lui-seul pour la distinguer également de la *Terebratula vitrea* de Lamarck. » Il faut souligner que le nom correct de l’espèce est *miocenica* ou *miocenicus*. Meznerics (1943) décrit cette espèce sous *Gryphus*, mais n’évoque pas *T. minor* au sein de sa longue liste de *Terebratula* dans des gisements tertiaires de Hongrie. Récemment, Bitner & Dulai (2004) confirment que cette espèce, petite en taille, appartient bien au genre *Gryphus* avec une commissure antérieure rectiforme comme chez *Gryphus vitreus* : elle est connue depuis l’Éocène jusqu’à nos jours. En l’absence de description des structures internes de la coquille, il est impossible d’identifier des exemplaires pouvant se référer à *G. miocenicus*.

Davidson écrit : « I have compared species of the fossil shell with species dredged alive by Prof. Seguenza in the bay of Messina, and found them to be identical I cannot, however, get rid of the idea that *Liothyris minor* is more than a small race or variety of *Liothyris vitrea*; it occurs, associated with the last-named shell, in the same beds and localities in Calabria and in Sicily. » Kowalevsky (in Oehler & Deniker, 1883) fait quelques observations sur l’embryologie de *Terebratula minor*. Carus (1893) cite de nombreuses localités de la forme vivante de *Terebratula affinis (= minor)* (Tableau 11) en mer Méditerranée (Adriatique, mer Égée, Sicile, Corse, Alger, Tunis, Marseille,...) qui sont à attribuer à *Gryphus vitreus*.

Maugeri Patanè (1929) considère *Terebratula* (*Liothyria*) *minor* comme distincte de *Gryphus vitreus* : « ha una linea di commessura fortemente accentuata (quasi aussente nella vitrea), nonché apparicchio brachiale puitosto parallelo, che nella vitrea è quasi triangolare com’ebbero un osservare Aradas e Benoit (1870) ; et il décrit trois variétés, nommées *depressa, globosa* et *rotundata*, fondées principalement sur la forme de la coquille, en précisant que *T. minor* est présente dans le bassin méditerranéen occidental. Ses figures 1 à 3, pl. 28, confirment la similitude avec *G. vitreus* (à comparer avec Fig. 5-5). Lipparini et al. (1981) ont signalé *Terebratula* (*Liothyria*) *sphenoidea* et *T. (Liothyria) vitrea* var. *minor* au Plioène au Cap Milazzo (Sicile).

Ruggiero & Raia (2010) ont décrit *G. minor* en grande abondance dans un sable silicioclastique-carbonate d’environ 1 m d’épaisseur : la fraction vaseux augmente dans le haut de la couche et pourrait être responsable de la fossilisation. Ils considèrent cette espèce comme une espèce méditerranéenne éteinte valide, ayant été attribuée de diverses manières à des espèces ou sous-espèces distinctes, dont *dilatatus* (Jeffreys), *elongatus* (Jeffreys) selon que les coquilles soient plus larges, plus étroites ou plus allongées. D’autres auteurs, dont Logan (1979), Boullier et al. (1986) et Huault (1990) ont montré, voire démontré, que la variabilité des formes est une caractéristique de
Gryphus vitreus qu’il faut nécessairement prendre en compte, tout comme la distribution géographique et biocénétique des populations.

Fig. B-2: Extrait en fac-similé de la planche I (*espèce fossili*) de Seguenza (1871).

Terebratula minor, Philippi (ingrandita).
12. Esemplare del pliocene superiore di Catanzaro.
15. Un individuo dello Zancleano sup. di cui sono più appa riscenti le pieghe della contrada Pietrazza presso Messina (ingrandito).
16 bis. Varietà troncata ed elargito alla fronte, pliocene superiore di S. Filippo.
17. Apparecchio apofisario ingrandito della *T. Lyelliana* di Gravitelli.

Terebratula sphenoida, Philippi.
20. Forma allungata dello stesso luogo e terreno.
22. Una forma breve e larga di Scirpi nello Zancleano medio.
23. Un esemplare colla troncatura frontale meno distinta, SCIRPI.
24. Un altro assai breve colla maggior larghezza verso la metà del medesimo luogo e terreno.
25. Un grande esemplare e largo, dello Zancleano superiore di Trapani presso Messina.
26. Apparecchio apofisario de un esemplare della Contrada Pietrazza.
Au cours des nombreuses expéditions récentes en Méditerranée, Gryphus minor n’a jamais été formellement identifiée, ni considérée comme une forme juvénile de G. vitreus, à cause des grandes variations des caractères de cette dernière espèce (Boullier et al., 1986 ; Huault, 1990).

Pour clore, cet exposé, il est intéressant de reproduire la planche 1 de Seguenza (1871) avec les caractéristiques des coquilles de Terebratella minor Philippi et de T. sphenoida Philippi (Fig. B-2) ; ces espèces considérées ici comme synonymes respectivement de Gryphus vitreus (Born, 1778) et de Stenosarina sphenoida (Philippi, 1844) que Logan (1998) avait renommée sous S. davidsoni Logan, 1998.

À consulter les descriptions des nombreuses espèces de brachiopodes fossiles par les auteurs cités dans le Tableau 11, il faut élargir la question de la validité de toutes les espèces de brachiopodes décrites depuis l’Éocène dans le domaine méditerranéen : combien sont réellement identifiables en réexaminant tous les caractères taxinomiques et leurs variations. En même temps, il faut vérifier en se basant sur leurs variations que les caractères disponibles sur les formes fossiles sont suffisants pour discriminer des individus jusqu’à l’espèce, surtout quand ces formes sont toujours vivantes dans le milieu marin (voir Appendice A). La révision de la taxinomie des brachiopodes n’est pas une litote, mais une nécessité, notamment pour pouvoir appréhender la biodiversité vraie et son évolution à travers les temps géologiques jusqu’à nos jours.
Appendice C.

Historique de la systématique de Terebratula seminulum Philippi, 1836

Terebratula seminulum a été récoltée en mer profonde au large de Drépane aujourd'hui Trapani (*Tràpani* en sicilien, *Drépanon* en grec ancien ou *Drepanum* en latin), un port situé à l'extrémité occidentale de la Sicile (Italie). Elle a été décrite par Philippi en 1836 et représentée sur sa pl. VI, fig. 15 (Fig. C-1).

7. *Terebratula Seminulum* Phil. t. VI. f. 15. a—g.

T. testa minima, orbicularis, transversa, aut ovata, saepe in fronte emarginata, compressa, densissime punctata, foraminine incommo magno; seceito e disseipimento parvo triangulare formato.

**Plurima specimina ollae antiquae e mari profundo Drepanensi extractae adhaeren-
tia inveni.**

Testa circa 1 mm longa, totidem lata, max exacte orbicularis, max transversa, max ovata, in fronte saepe emarginata vid. fig. b, d, e, f, semper compressa, densissime punctata. Apertura incompleta v. fig. 15. d.; deltium non vidi. Sceleton internum simpli-
cissimum, a lamella triangularis versus frontem declivi formatum, v. fig. a ubi a latere in-
spectum est. Brachia versus eardinem connata seriem eiliarum simplicem, orbicularum antice interruptum exhibent v. f. b. — Color testae albidus.

Fig. C-1. Fac-similé de la description originale de *Terebratula seminulum* et de la fig. 15 pl. VI par Philippi (1836), représentant *Terebratula seminulum*, avec l'extrait de la légende correspondant à la fig. 15 (voir texte ci-
dessous). La longueur de la coquille est d'environ une ligne (ou '''), soit environ 2,3 mm.

Philippi (1844) considère *T. seminulum* comme synonyme d'*Orthis neapolitana* Scacchi, aujourd'hui *Joania cordata* (Risso, 1826) (Fig. C-2). En effet, en observant la Fig. C-1, on ne peut que conclure que ce sont deux espèces distinctes qui sont représentées : a-d - pouvant bien correspondre à *Platidia* (ou *Amphithyris ?*) et e-f - à *Joania* (?) (Fig. C-2) : cette ambiguïté se retrouve ensuite dans le débat qui suit sur l'identité des exemplaires représentés en les référant tous à la même espèce ce qui est probablement erroné.

T. testa minima, orbicularis, transversa aut ovata, saepe in fronte emarginata; seceito e disseipimento parvo triangulare formato.

Terebratula Neapolitana Scac. Oss. zoöl. II. 1833. p. 18.

Fig. C-2. Fac-similé de l’extrait de Philippi (1844) classant *T. seminulum* avec *Orthis neapolitana*, décrite par Scacchi en 1833 - aujourd'hui *Joania cordata*.

Davidson (1852, 1887) considère *Terebratula seminulum* comme appartenant au genre *Platidia*, en indiquant que *T. appressa* Forbes, 1844, récoltée en mer Egée était synonyme. Pourtant, en 1852 (p.
371), Davidson observe que : « Philippi’s species has been mistaken by Sowerby, who gave the name *seminulum* to another form which we have called *Argiope Forbesii*. » *A. forbesii* Davidson, 1852 est synonyme de *Joania cordata*. Dans aucun de ses deux travaux, il ne fait référence au changement fait par Philippi (1844).

Fischer & Oehlert (1891) estime que la forme du lophophore n’est pas celui des *Platidia*, mais peut-être celui des *Cistella* (genre qui correspond actuellement à *Argyrotheca* Dall, 1900 et à *Joania* Álvarez, Brunton et Long, 2008). Ils font aussi référence à une figure de Monterosato (1879) (Fig. C-4) ; or ce dernier auteur considère que *seminulum* est une *Platidia* et il écrit que Philippi (1844) « *la rapporte, par inadvertance, au T. Neapolitana, Scacchi.* » Thomson (1927) place *T. seminulum* dans le genre *Amphithyris* Thomson, 1918 en considérant que dans Davidson (1887, pl. 20, fig. 20-22) : « Philippi’s figures reproduced by Davidson leaves no doubt as to distinct characters of the lophophore. » (Fig. C-3) et donc que Davidson (1887), puis Dall (1920) auraient assigné par erreur cette espèce à *Platidia*. Atkins (1959, fig. 23, p. 126) compare les figures de Philippi (1836) avec un individu de *Platidia anomioides* de même taille, soit environ 2 mm. Elle en conclut que *T. seminulum* est une forme juvénile de *P. anomioides*, comme l’a déjà mentionné Jeffreys (1878). À noter que la forme du lophophore n’est définitive que chez un adulte mature, puisqu’au cours du développement d’un individu, cette forme évolue, comme le fait aussi remarquer Atkins (1959). Ainsi, elle ne peut être considérée comme un caractère taxinomique, mais seulement comme un caractère additionnel (dans sa forme adulte), comme cela a été démontré dans le groupe voisins des Phoronida par Emig (1985b).

![Fig. C-3. Fac-similé des figures 20-22 de la pl. 21 de Davidson (1887, d’après Philippi, 1836) représentant *Terebratula seminulum* – ci-dessus. Elles correspondent respectivement aux figures 15 d, e, b de Philippi (1836) (Fig. C-1).](image1)

![Fig. C-4. Fac-similé de la figure 3, pl. 13 de Monterosato (1879) – ci-contre.](image2)

Dans la collection du Museum für Naturkunde (Berlin, Allemagne), Lüter & Sieben (2005) ont découvert une petite boîte avec plusieurs exemplaires étiquetés : « *Terebratula seminulum Ph.*, Sicilia, Dr. Ph. » En les examinant, ils ont trouvé que ces exemplaires correspondaient à deux espèces différentes et de conclure que, sur la figure originale de Philippi (1836), les coquilles a-d correspondaient à *Platidia anomioides* et celles e-g à *Joania cordata* (Fig. C-1). On peut se demander si cette boîte n’a pas été oubliée par Rudolph Amandus Philippi (1808-1904) quand il a émigré au Chili en 1854 ; en effet, selon une descendance Eyzaguirre-Philippi (2008 ; et communication personnelle), il avait emporté sa bibliothèque personnelle et ses collections à Santiago du Chili.

C’est dans la collection de Davidson au British Museum de Londres que MacKinnon et al. (2008) ont découvert cinq exemplaires étiquetés « *Platidia seminulum* : specimens described and given to me by Marquis of Monterosato as belonging to Philippi’s species, Journ. de Conchylologie » provenant de Méditerranée, ainsi que qu’un autre individu marqué « *P. anomioides*, Canon Norman Collection, Naples »: leur examen a conduit ces auteurs à les identifier comme *Amphithyris seminula* (Philippi, 1836), confirmant cette espèce dans ce genre par Thomson (1927). Mais, ils ne citent pas la publication de Lüter & Sieben (2005). En outre, il est quand même curieux que Davidson n’ait jamais évoqué la possession de ces spécimens dans sa collection, d’autant qu’il décède en 1885 avant même la parution de sa monographie 1886-1888, dans laquelle il reproduit les trois figures de Philippi (1836) (Fig. C-2, C-3) sans mentionner les exemplaires donnés par de Monterosato. Par ailleurs, lors de son voyage à Nice (avec des contacts avec des collègues italiens) à la demande de J.G. Jeffreys, Davidson
n’évoque aucune relation avec de Monersato. Ce voyage fut initié afin de vérifier avec minutie la validité des espèces de brachiopodes décrites par Antonio Risso (1777-1845), un pharmacien naturaliste italien (Emig, 2012). Ses travaux n’avaient guère satisfait ces auteurs anglais comme l’écrit Davidson (1869) : « consequently we must not be surprised to find so large an amount of error in the work above specified. » Il n’est pas sûr que la communauté scientifique italienne ait apprécié !

Nauendorf et al. (2014) décrivent Terebratula seminulum sous Amphithyris seminula (Philippi, 1836) en considérant que toutes les références à un autre genre faites par les divers auteurs sont érronées et que leurs spécimens sont à mettre sous le nom de genre Amphithyris. Le type de cette espèce a été choisi parmi les spécimens de Philippi, cités sous Platidia anomioides par Lüter & Sieben (2005). Cependant, ces spécimens, au moins certains, auraient été inclus dans la collection de Helmcke (1940) ; or, cet auteur n’a pas fait de travaux sur les brachiopodes méditerranéens mais au contraire antarctiques. Dans l’inventaire du Zoologischen Museum zu Berlin, dressé par Helmcke en 1939, on trouve Argyrotheca cistellula sous la mention « Trapani (Philippi) » et « Palermo (Monersato) », des Joania cordata sous « Trapani (Monersato) », des Megathiris detruncata sous « Trapani (Philippi) », des Platidia anomioides sous « Palermo (Monersato) ».

Difficile de conclure avec certitude, car les contradictions subsistent et apparaissent à travers cet historique, auxquelles il faut ajouter le fait qu’aucune signalisation du genre Amphithyris n’a jamais été faite en mer Méditerranée au cours de siècles de récolte, notamment pour les individus réfréables à Platidia (Fig. 5-8), que le genre Amphithyris est restreint au Sud Pacifique, à l’Afrique du Sud et à l’Antarctique. Il ne s’agit pas de mettre en doute l’identification des spécimens, mais de s’interroger sur leur origine. La solution se trouve probablement au large des côtes siciliennes, et plus largement méditerranéennes. En attendant, la présence d’Amphithyris en mer Méditerranée apparaît comme fort peu probable.
Brachiopodes récoltés lors de campagnes (1976-2014) dans l’étage Bathyal des côtes françaises méditerranéennes

Redéfinition des limites du système phytal dans le domaine marin benthique

Emig C. C., BrachNet, 20, Rue Chaix, F-13007 Marseille (France)

Brachiopods sampled during expeditions (1976-2014) in the Bathyal Zone of the French Mediterranean coasts.

Redefinition of the boundaries of the phytal system in the marine benthic domain.

The distribution of brachiopods along the French Mediterranean coast, especially in the Bathyal zone, was studied in detail from 1976 to 2014 being one of the main objectives of the RCP-CNRS No 728, that took place during the years 1983 to 1989. The data obtained during these campaigns constitute the main objective of this e-book, which focuses on five brachiopod species *Novocrania anomalos*, *Gryphus vitreus*, *Terebratulina retusa*, *Megathiris detruncata*, *Platidia anomioides* and *Megerlia truncata* that occur in the Upper Bathyal zone. The e-book consists of nine chapters, of which the last two contain the data concerning all the stations studied, the distributional charts of the five species mentioned, included. The presence of these species in the Mediterranean biocenoses has put in evidence a hiatus in the systematics based mainly in characters of the shell and rarely in phylogenetic analyses. Another important point that is addressed is the discussion of the validity of some species with fossil record, being *Terebratula minor* (= *Gryphus vitreus*), as well as of extant ones, i.e., *Terebratula seminulum*, chosen as examples. Finally, the infestation of *G. vitreus* shells by the *Ostreobium* algae led to reconsider the lower limit of the benthic phytal system and its bathymetric variations as far as in the Bathyal.

http://paleopolis.rediris.es/cg/CG2018_B01/