Carnets Geol. 17 (3)  

Click here to close the window!

Contents

[1. Introduction] [2. Material and methods] [3. The allochems (larger than 0.250 mm)]
[4. The facies] [5. Some notes on "algae"] [6. Discussion and conclusions]
[Bibliographic references] [Appendix] and ... [Plates]


Sedimentological investigation on Holocene deposits
in the Mussafah channel
(Abu Dhabi, United Arab Emirates)

Bruno Granier

Dépt. STU, Fac. Sci. Tech., UBO, 6 avenue Le Gorgeu, CS 93837, F-29238 Brest (France)

Department of Ecology and Evolutionary Biology, The University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas 66045 (USA)

Robert Boichard

TOTAL E&P, Geo-Technology Solutions, Office BA2019, TOTAL - CSTJF, avenue Larribau, 64018 Pau (France)

Published online in final form (pdf) on June 25, 2017
DOI 10.4267/2042/62267
[Editor: Michel Moullade; language editor: Phil Salvador; technical editor: Bruno Granier]

Click here to download the PDF version!

Abstract

Eight macrofacies types (5) plus subtypes (3) were identified while measuring sections along the Mussafah channel profile. These include:
• aeolian sands,
• microbial mat and microbial-laminated sediments,
• gypsum and enterolithic anhydrite, i.e., a diagenetic variation of the previous facies,
• muds with small pelecypods, and • its seagrass meadow version,
• Potamid sands, and • its cemented version, i.e., the Potamid beach-rock,
• washover fan coquina. 

A complete set of analyses, including granulometry, mineral composition, clay composition, TOC, and identification of the allochems and the microfossils, was performed on this material. The facies and their genetic setting, i.e., the sequence of facies, provide a perspective on both the environmental and stratigraphical significance of their distribution, both lateral and vertical, and an example of the application of the Walther's law. The lower microbial mat is the mark of a transgression whereas the upper microbial mat is the mark of a forced regression. In conclusion, the sequence of facies allows identification of the last Holocene transgressive-regressive cycle that includes a forced regression, which probably dates back to 6,000 years BP.

Key-words

• Holocene;
• Flandrian;
• Abu Dhabi;
• Persian Gulf;
• facies;
• transgression;
• forced regression.

Citation

Granier B. & Boichard R. (2017).- Sedimentological investigation on Holocene deposits in the Mussafah channel (Abu Dhabi, United Arab Emirates).- Carnets Geol., Madrid, vol. 17, no. 3, p. 39-104.

Résumé

Recherches sédimentologiques sur des dépôts holocènes dans le canal de Mussafah (Abou Dabi, Émirats Arabes Unis).- Huit macrofaciès (5 types et 3 sous-types) ont été reconnus au cours de levés de coupes sériées le long du canal de Mussafah et dans son prolongement. Il s'agit :
• de sables éoliens,
• du tapis microbien et des sédiments à laminations microbiennes associés,
• de gypse et d'anhydrite entérolithique, soit une variante diagénétique du faciès précédent,
• de boues à petits bivalves et • de sa version d'herbier marin,
• de sables à Potamides et • de leur version cimentée, soit le grès de plage à Potamides,
• de lumachelles de dépôts de débordement. 

Un ensemble complet d'analyses, comprenant granulométrie, composition minéralogique, fraction argileuse, COT, identification des microfossiles et autres éléments figurés, a été réalisé sur ce matériel. Les faciès et leur cadre génétique, c'est-à-dire la séquence de faciès, donnent une idée de l'importance à la fois environnementale et stratigraphique de leur répartition, à la fois latéralement et verticalement, et fournissent un exemple d'utilisation de la loi de Walther. Le tapis microbien inférieur est la marque d'une transgression alors que le tapis microbien supérieur apparaît comme celle d'une régression forcée. En conclusion, la séquence de faciès permet d'identifier le dernier cycle transgressif-régressif holocène qui comprend une régression forcée débutant probablement vers 6000 ans avant J.C.

Mots-clefs

• Holocène ;
• Flandrien ;
• Abou Dabi ;
• Golfe persique ;
• faciès ;
• transgression ;
• régression forcée.


1. Introduction

The Mussafah channel is located on the south-eastern side of Khor Qirqishan, the lagoon bordering the Abu Dhabi city island on its south-western side (Fig. 1 ). This entirely artificial structure was cut inland in 1985 over a distance of some six kilometers almost perpendicular to the coastline, i.e., in a roughly East-West direction.

Fig. 1
Click on thumbnail to enlarge the image.

Figure 1: A) Location (satellite image) of the Mussafah channel, Abu Dhabi (Images © 2016 TerraMetrics, Données cartographiques © Google). B) Enlargement of the orange rectangle with the red dotted contour of the channel in 1987 and its blue full contour in 2016.

The Mussafah channel transect (Poster 1 ) has been reconstructed from partial sections distributed over a total length of some seven kilometers along the channel or on its axial projection. These sections were examined in 1986 and 1987. They are two hundred meters apart on average and are identified on the basis of their distance from the beginning of the transect along the channel (Poster 1 ).

Poster 1
Click on thumbnail to enlarge the image.

Poster 1

A preliminary (unpublished) TOTAL internal report was issued the next year (Granier, 1988) followed by Kenig's PhD thesis (1991) and a set of works that focus on the distribution of organic matter in the Holocene sediments of Abu Dhabi (Kenig et al., 1990; Baltzer et al., 1994; Kenig, 2011). Six of the studied sections were examined in greater detail, involving sediment sampling. They correspond to -2 km, 0 km, 0.6 km, 1.6 km, 4.2 km, and 6 km marks. Field information gathered in this study is supplemented by data from two additional sections (sites 14 B and 14 D), visited in an earlier excursion in 1986, and from a trench dug two kilometers downdip of the western end of the channel. The studied sections are:

Poster 2

Poster 2
Click on thumbnail to enlarge the image.

Poster 3

Poster 3
Click on thumbnail to enlarge the image.

Poster 4

Poster 4
Click on thumbnail to enlarge the image.

Poster 5

Poster 5
Click on thumbnail to enlarge the image.

Poster 6

Poster 6
Click on thumbnail to enlarge the image.

Poster 7

Poster 7
Click on thumbnail to enlarge the image.

Poster 8

Poster 8
Click on thumbnail to enlarge the image.

Poster 9

Poster 9
Click on thumbnail to enlarge the image.

Most depositional facies observed along the Holocene Mussafah channel transect are currently observed on the coastal margins of the inner lagoonal areas of Abu Dhabi island where they are roughtly arranged in "living" facies belts, as recorded in the literature (e.g., Kendall & Skipwith, 1969a, 1969b; Evans et al., 1973; Alsharhan & Kendall, 2003). The few remaining facies correspond to the fossil or diagenetic counterparts of modern facies. Using an approach similar to that of Wagner and van der Togt (1973), a complete set of simple analyses (including microfacies analyses) was then run to help identifying the primary depositional macrofacies. The reconstruction of the horizontal and vertical sequence of facies enabled us to partly unravel of the last Holocene sedimentary cycle in the area studied.

Figs. 2-6 Fig. 2 Fig. 3 Fig. 4A Fig. 4B Fig. 5 Fig. 6
Click on thumbnails to enlarge the images.

Figure 2: Site 14 D. Figure 3: 0 km mark. Figure 4: A) Site 14 B; B) Detail of the lower microbial mat at site 14 B. Figure 5: 4.2 km mark. Figure 6: 6 km mark.

2. Material and methods

More than sixty unconsolidated samples were weighed before wet sieving and splitting into four grain size categories:

For each sample all of these categories were dried, then weighted. The results are expressed as a percentage of the original dry weight of the sample (Table 1; Poster 10 ). The value for a fifth category that groups all those particles finer than 63 µm, e.g., lime mud, clay minerals, organic matter, or sulphate salts, was back-calculated from the difference between the above summation and the original dry weight.

Table 1: Grain sizes (%).

Stops Sample no. > 2,000 µm 250-2,000 µm 125-250 µm 63-125 µm
14B-I ABA 93 0.0 4.9 19.3 19.6
14B-II ABA 94 0.3 3.1 5.7 22.6
14B-III ABA 95 2.5 2.5 5.6 19.3
14B-IV ABA 96 0.0 12.9 52.9 29.4
14B-V ABA 97 0.0 1.7 24.3 59.0
14B-VI ABA 98 41.7 28.9 9.4 2.4
14D-I ABA 99 2.7 24.1 10.8 12.7
14D-II ABA 100 0.3 1.2 2.0 11.1
14D-III ABA 101 0.0 2.6 12.3 29.2
14D-IIIDis ABA 102 17.5 25.6 25.1 18.3
14D-IV ABA 103 0.8 11.5 18.6 20.5
14D-V ABA 104 0.0 15.3 55.3 22.3
14E-I ABA 105 0.0 0.1 0.1 2.4
14E-II ABA 106 0.0 0.0 0.1 0.9
14E-III ABA 107 0.0 0.6 0.7 5.7
14E- ABA 110 0.7 1.8 2.5 6.0
0 km-A ABA 121 28.6 53.9 9.3 3.4
0.2 km-A ABA 122 25.7 13.3 18.1 5.3
0.6 km-A ABA 123 0.1 1.8 23.8 37.1
1.6 km-A ABA 124 0.0 2.6 4.8 17.3
4.2 km-A ABA 126 0.0 0.3 4.5 29.8
0.2 km-A1 ABA 127 7.3 75.2 12.2 2.3
0.2 km-A2 ABA 128 94.2 1.7 1.0 0.9
-2 km-A ABA 129 12.0 9.6 2.7 6.6
0 km-B ABA 131 0.4 18.1 9.6 14.7
0.6 km-B ABA 132 0.1 4.0 16.9 18.7
1.6 km-B ABA 133 2.6 15.8 3.8 11.6
4.2 km-B ABA 134 0.0 0.1 0.9 15.8
6.0 km-B ABA 135 0.0 2.2 5.0 19.3
-2 km-B ABA 136 0.0 3.9 1.2 6.9
0 km-C ABA 137 0.0 2.3 3.1 11.5
0.6 km-C ABA 139 0.0 4.4 19.9 24.7
1.6 km-C ABA 140 0.3 0.1 0.2 4.6
4.2 km-C ABA 141 0.0 0.0 0.5 9.1
6.0 km-C ABA 142 0.0 2.3 5.7 22.7
-2 km-C ABA 143 0.6 4.7 1.3 3.4
0 km-D ABA 144 1.3 5.2 6.0 14.1
1.6 km-D ABA 146 0.2 2.1 11.5 20.2
4.2 km-D ABA 147 0.0 0.0 1.5 6.8
6.0 km-D ABA 148 0.0 0.8 0.4 6.6
-2 km-D ABA 149 0.0 2.7 4.6 22.1
0 km-E ABA 150 8.0 22.4 21.5 29.0
1.6 km-E ABA 161 10.9 29.5 14.7 17.8
4.2 km-E ABA 162 0.0 0.0 0.3 1.6
6.0 km-E ABA 163 0.2 6.9 1.1 3.4
-2 km-E ABA 164 0.0 10.1 12.9 35.2
0 km-F ABA 165 6.8 26.5 12.3 18.9
0.6 km-F ABA 166 0.0 31.8 41.0 19.7
4.2 km-F ABA 168 0.4 1.6 6.3 19.5
6.0 km-F ABA 169 1.2 14.1 20.6 33.0
0 km-G ABA 170 0.0 15.6 44.9 20.9
4.2 km-G ABA 171 62.2 12.2 10.5 8.2
4.2 km-H ABA 173 8.5 31.8 27.0 20.5
6.0 km-H ABA 173bis 3.3 11.1 10.9 46.4
4.2 km-K ABA 176 7.5 19.7 20.3 28.1
4.2 km-L ABA 177 0.2 2.2 3.8 23.9


Poster 10


Poster 10

Click on thumbnail to enlarge the image.

Finally, discrete allochem types ranging in size from 0.250 to 2 mm were identified using stereoscopic lenses and their proportion of the total population expressed as a percentage (Table 2). By comparison, Wagner and van der Togt (1973) were only considering three categories (finer than 63 µm, between 63 µm and 2 mm, larger than 2 mm).

Table 2: Components (250 -2,000 µm).

14B-I ABA 93       - - 1 - - - -     1     -   1 -         91 6    
14B-II ABA 94       - 2 1 2 1 7 7     8     6 - 2 -         72 7    
14B-III ABA 95       - - - 3 2 17 17     6 - - 4   2           68 1    
14B-IV ABA 96   X         X           X X           X X X X   100  
14B-V ABA 97   X         X           X X   X       X X X X   100  
14B-VI ABA 98       3 10 8 21 6 - -     14 1   11 - 1 -         38 1  
14D-I ABA 99         - - - -         -     -               100      
14D-II ABA 100         4 2   1 - -     1   - -   -           76 13 -  
14D-III ABA 101         2 - 3 - 2 2     2     2   -           80 11    
14D-IIIDis ABA 102       - 8 2 3 2 17 17     2     2   -           66      
14D-IV ABA 103       - 6 4 3 3 2 2     2     2               80      
14D-V ABA 104   X     * * * - - -     * X   *       X X X X   100  
0 km-A ABA 121       - 11 6 19 8 - - - - 12 2   9   1           43      
0.6 km-A ABA 123             26 3 8 6 1 1 30 1 - 5   20 3         17 14 14  
1.6 km-A ABA 124   *       - X           * X             X X X   100  
4.2 km-A ABA 126   X                     X X   X     X X X       100  
-2 km-A ABA 129                                               100    
0 km-B ABA 131       - 1 1 2 2         1 -   -   - -         93      
0.6 km-B ABA 132           - 39 - 1 1 - - 23 - - -   19 4         32 5 5  
1.6 km-B ABA 133       - - - -   - -     -     - - -           100 -    
4.2 km-B ABA 134   X           x         X     X     X X   X     100  
6.0 km-B ABA 135       -   4 3 3 10 8 1 1 18 -   17   -           62      
-2 km-B ABA 136                                               100    
0 km-C ABA 137         1 1 7 1 - -     2         2           86 2    
0.6 km-C ABA 139             7 - 2 2 - - 15 - -     13 2         74 2 2  
6.0 km-C ABA 142     -     3 6 2 3 3 -   14 1 - 11   2           54   18  
-2 km-C ABA 143             X X                               100    
0 km-D ABA 144         - 3     - -     -     -               96      
0.6 km-D ABA 145   X   X   X X X X X     X X   X   X       X        
1.6 km-D ABA 146             -   3 - 1 1 52 1 - -   45 4           22 23  
4.2 km-D ABA 147   X           X                           X        
6.0 km-D ABA 148   X   X   - * * - -     * X   -         X X X   100  
-2 km-D ABA 149   X         X X         X X           X X X X   100  
0 km-E ABA 150         3 2 1 2 15 15     4 -   1   3           73      
0.6 km-E ABA 160             3 3 3 3 -   6 -       5 -         77 8    
1.6 km-E ABA 161       - 6 2 11 1 - - - - 16 2 - 10   4 -         60   3  
6.0 km-E ABA 163   X   X   2 10 6 - -     2 -   *     2   X X     80  
-2 km-E ABA 164   X         X X         X X   X X       X X X   100    
0 km-F ABA 165   - - - 10 4 - 1 8 8     4 -   2   2           64 8    
0.6 km-F ABA 166   X         X           X     X       X X   X   100  
1.6 km-F ABA 167           X X X X X     X X   X   X X X   X        
4.2 km-F ABA 168       - - - 3 - - -     2     1   -           90      
6.0 km-F ABA 169       - 1 6 7 2 - -     21 2 - 17 - 2 -         42   21  
0 km-G ABA 170   *   * 1 - * * 3 3     -     *       X X X   - 96  
4.2 km-G ABA 171         * - 2 1 3 3     4 *   3   1 *         88    
6.0 km-I ABA 172         X X X X X X     X X   X   X X              
4.2 km-H ABA 173       - 1   2 - 1 1     8 - - 6   - 1         87   -  
6.0 km-H ABA 173bis -         6 35 5 3 3 -   28 8 - 15   1 3         19   4  
4.2 km-I ABA 174           X X X X X     X X   X   X X              
4.2 km-J ABA 175         X X X X X X     X X   X   X X              
4.2 km-K ABA 176       -   - 11 - - - -   16 6 - 4   3 3         49   21  
4.2 km-L ABA 177       -   1 5 2 3 3     75 20 - 45   8 1         14   -  

Lithified samples and those allochems first called "rounded grains", which were barely identifiable, may require petrographic thin sections for reliable identification. In such cases only occurrences, not percentages, are reported.

Additionally, G. Jousson analysed the mineralogical composition of the samples by X-ray diffractometers (Table 3). Identification of the clay minerals was performed on about ten samples only (Table 4). In addition, F. Kenig analysed the Total Organic Carbon (TOC) of about fifteen samples (Table 5).

All the results of these analyses are compiled in a set of tables (Tables 2 - 3 - 4 - 5).

Table 3: Mineralogical composition (%).

Stops Sample no.   Mg Calcite   Aragonite   Calcite   Dolomite   Halite   Gypsum   Anhydrite   K-Feldspar   Plagioclase   Quartz
14B-I ABA 93 0 27 6 5 26 0 0 0 0 6
14B-II ABA 94 3 22 14 0 19 0 0 0 2 7
14B-III ABA 95 4 20 14 9 18 0 0 0 4 7
14B-IV ABA 96 0 15 46 0 3 0 0 0 5 12
14B-V ABA 97 0 0 53 4 10 0 0 0 6 10
14B-VI ABA 98 0 55 0 0 2 22 0 0 0 2
14D-I ABA 99 4 39 6 5 15 0 0 0 0 3
14D-II ABA 100 0 20 10 12 14 0 0 0 1 5
14D-III ABA 101 4 30 9 3 29 0 0 0 0 3
14D-IIIDis ABA 102 3 51 11 0.1 5 0 0 0 0 4
14D-IV ABA 103 2 31 7 3 25 0 0 0 4 6
14D-V ABA 104 0 24 46 0 5 0 0 0 0 12
0 km-A ABA 121 3 69 9 0 3 0 0 0 0 0.1
0.2 km-A ABA 122 3 40 11 0 12 24 0 0 0 1
0.6 km-A ABA 123 4 33 10 8 13 0 0 0 0 4
1.6 km-A ABA 124 0 0 14 4 13 0 35 0 3 3
3 km-A ABA 125 0 0 5 0 4 80 0 0 0 0
4.2 km-A ABA 126 0 0 14 31 12 0 0 4 3 7
0.2 km-A1 ABA 127 0 58 8 0 1 0 0 0 2 2
0.2 km-A2 ABA 128 0 70 5 0 1 0 0 0 0 2
-2 km-A ABA 129 0 0 5 33 14 0 0 3 2 3
-2 km-AM ABA 130 0 0 11 0 3 55 0 0 2 4
0 km-B ABA 131 5 31 7 7 15 0 0 0 0 2
0.6 km-B ABA 132 5 26 9 22 9 0 0 0 0 3
1.6 km-B ABA 133 0 36 11 5 14 0 0 0 3 2
4.2 km-B ABA 134 0 0 20 5 9 0 0 3 5 8
6.0 km-B ABA 135 4 51 12 3 6 0 0 0 0 2
-2 km-B ABA 136 0 14 4 10 10 45 0 0 2 2
0 km-C ABA 137 3 16 9 14 16 0 0 0 3 4
0.2 km-C ABA 138 0 20 42 0 1 0 0 0 4 9
0.6 km-C ABA 139 4 33 6 14 8 8 0 0 0 3
1.6 km-C ABA 140 0 0 5 8 5 45 0.1 0 0 0.1
4.2 km-C ABA 141 0 0 10 0 5 44 9 0 0 1
6.0 km-C ABA 142 0 0 5 0 5 59 4 0 0 0
-2 km-C ABA 143 0 0 6 0 6 55 8 0 0 0
0 km-D ABA 144 5 25 11 4 18 0 0 0 0 3
0.6 km-D ABA 145 0.1 46 7 9 5 0 0 0 0 3
1.6 km-D ABA 146 4 27 9 22 8 0 0 0 0 2
4.2 km-D ABA 147 0 0 7 0 5 29 25 0.1 0.1 1
6.0 km-D ABA 148 0 0 10 0 5 55 3 0 0 0
-2 km-D ABA 149 0 0 17 3 8 0 70 0 0 1
0 km-E ABA 150 3 47 14 0 4 0 3 0 0 7
0.6 km-E ABA 160 0 10 17 15 20 0 0 0 0 4
1.6 km-E ABA 161 6 43 6 19 3 0 0 0 0 3
4.2 km-E ABA 162 0 0 5 0 5 55 0.1 0 0 0
6.0 km-E ABA 163 0 12 8 0 4 53 0 0 0 0
-2 km-E ABA 164 0 0 39 6 6 0 7 0 3 8
0 km-F ABA 165 2 36 11 4 12 0 0 0 0 5
0.6 km-F ABA 166 0 18 45 5 2 0 0 0 5 10
1.6 km-F ABA 167 7 50 10 5 0.1 0 0 0 3 4
4.2 km-F ABA 168 4 43 15 3 8 0 0 0 0 3
6.0 km-F ABA 169 4 56 7 0 3 10 0 0 0 2
0 km-G ABA 170 0 22 42 2 4 0 0 0 5 15
4.2 km-G ABA 171 0 67 9 2 3 0 0 0 0 3
6.0 km-G ABA 172 0.1 57 6 3 1 0 0 0 0 2
4.2 km-H ABA 173 5 62 7 0 2 0 0 0 0 3
6.0 km-H ABA 173bis 5 55 8 4 1 0 0 0 0 2
4.2 km-I ABA 174 0 60 7 0 2 0 0 0 0 3
4.2 km-J ABA 175 3 65 6 2 0 0 0 0 0 2
4.2 km-K ABA 176 5 48 7 15 2 0 0 0 0 0.1
4.2 km-L ABA 177 11 37 15 8 4 0 0 0 1 3

Table 4: Clay minerals (%).

Stops   Sample no.   kaolinite   illite   attapulgite   montmorillonite   chlorite
14B-V ABA 97 14 0 40 41 5
0.6 km-B ABA 132 9 27 33 21 10
6.0 km-B ABA 135 13 35 39 0 13
1.6 km-C ABA 140 11 26 30 22 11
6.0 km-C ABA 142 12 35 41 0 12
1.6 km-D ABA 146 28 29 20 0 23
1.6 km-E ABA 161 26 37 17 0 20
4.2 km-F ABA 168 20 33 31 0 16
0 km-G ABA 170 99 0 0 0 0
4.2 km-H ABA 173 16 31 38 0 15
4.2 km-K ABA 176 20 29 19 17 15
4.2 km-L ABA 177 17 34 31 0 18

Table 5: Total organic carbon (%).

Stops   Sample no.   TOC
6.0 km-A   1.80
6.0 km-B ABA 135 1.00
6.0 km-C ABA 142 0.45
4.2 km-E1 ABA 162-1 0.35
4.2 km-E2 ABA 162-2 0.99
4.2 km-K ABA 176 0.24
3.6 km-A   1.57
3.0 km-A   0.00
2.6 km-A   1.00
2.6 km-B   0.58
1.6 km-B ABA 133 0.36
1.6 km-C ABA 140 0.22
1.6 km-D ABA 146 0.18
1.6 km-E ABA 161 0.18
0.6 km-E ABA 160 1.22
0.2 km-B   0.00
0 km-B ABA 131 0.62
0 km-C ABA 137 0.36
0 km-D ABA 144 0.98
0 km-F ABA 165 1.19
-2 km-A ABA 129 1.88
-2 km-B ABA 136 0.96
-2 km-C ABA 143 0.97
-2 km-BL2   1.48
-2 km-BG1   0.04
-2 km-BG2   0.09
0 km-RE   2.04
4.2 km-L ABA 177 0.86
4.2 km-F ABA 168 2.09

3. The allochems (larger than 0.250 mm) 

Four basic types of grains were identified: bioclasts, faecal pellets, lumps and intraclasts, and undetermined grains.

In this classification, the bioclasts comprise all skeletal remains the origin of which can still be clearly identified.

In this material we identified some faecal pellets with a peculiar spiral structure (Pl. 8 , fig. 5.a-d). According to Trichet (1967), "cette figure d'hélice serait due à une activité digestive préférentielle dans des zones de pression accentuée déterminées par la forme de l'intestin de l'animal" [this spiral shape may be related to the preferential digestive activity of the animal in zones of increased pressure determined by the morphology of its intestine]. In the same publication, the author provides information on their mineralization, i.e., on the precipitation of aragonite needles within an organic matrix. In this material dolomite rhombs grew in the needle mesh and eventually replaced the aragonite (Pl. 8 , fig. 6).

Lumps are aggregates of grains of various types (Pl. 15 , fig. 5).

Intraclasts are by-products of in situ early lithification with a limited reworking.

"Rounded grains" are calcitic grains commonly eroded and centripetally micritized. A petrographic thin section may be useful to analyse such grains. In most cases they are small lithoclasts. We can thus identify inside them smaller allochems with calcitic cements (Pl. 9 , figs. 1-4) and/or micritic matrices. Because all the components of these lithoclasts are truncated at their edges we assume that they probably result from the dismantling of layers already lithified and that they fall under the type defined as extraclasts. Constituent grains are commonly benthic foraminifers (e.g., Textulariidae: Pl. 9 , figs. 1 & 3-4; Lenticulinidae: Pl. 9 , figs. 5-6). Thin sections made on these initially undetermined grains (17 thin sections) and on lithified samples (10 thin sections) also revealed the occurrence of ooids, either allochthonous (reworked from Pleistocene or older rocks), calcitic with micritic-microsparitic cortices (Pl. 10 , figs. 1-2, 4-5 & 7), or autochthonous, aragonitic with micritic cortices (Pl. 11 , figs. 4-5). Both types are quite different from the honey-colored ooids found in the Abu Dhabi beaches (Pl. 10 , fig. 3). The mineralogical nature of these ooids was identified on thin sections coloured with a Feigl's solution that results in a selective colouring of the aragonite.

The largest morphological and mineralogical diversity is obviously found within the bioclasts with macrofaunal (e.g., pelecypods, gastropods, echinoderms, and sponges), microfaunal (foraminifers, ostracodes, and Spirorbis) and phycological remains (Rhodophyta and Chlorophyta, e.g., Acetabularia).

Representatives of more than ten genera of foraminifers were identified (identifications are based on Murray, 1966, 1970, and Hottinger et al., 1993) but some forms are clearly older, reworked material as, for instance, large hyaline tests referred to as Lenticulina (Pl. 9 , figs. 5-6) and agglutined tests referred to as Textulariidae (Pl. 9 , figs. 1 & 3-4), both found in extraclasts. The autochthonous forms comprise porcelaneous tests:

They also comprise: